Oculocutaneous albinism (OCA) is a common human genetic condition resulting from mutations in at least twelve different genes. OCA1 results from mutations of the tyrosinase gene and presents with the life-long absence of melanin pigment after birth (OCA1A) or with the development of minimal-to-moderate amounts of cutaneous and ocular pigment (OCA1B). Other types of OCA have variable amounts of cutaneous and ocular pigment. We hypothesized that white hair at birth indicates OCA1 and tested this in a sample of 120 probands with OCA and white hair at birth. We found that 102 (85%) of the probands had OCA1 with one or two identifiable tyrosinase gene mutations, with 169 (83%) of the 204 OCA1 tyrosinase gene alleles having identifiable mutations and 35 (17%) having no identifiable change in the coding, splice junction, or proximal promoter regions of the gene. The inability to identify the mutation was more common with OCA1B (24/35, 69%) than with OCA1A (11/35, 31%) alleles. Seven probands with no tyrosinase gene mutations were found to have OCA2 with one or two P gene mutations, and in eleven, no mutations were detected in either gene. We conclude that (1) the presence of white hair at birth is a useful clinical tool suggesting OCA1 in a child or adult with OCA, although OCA2 may also have this presentation; (2) the molecular analysis of the tyrosinase and P genes are necessary for precise diagnosis; and (3) the presence of alleles without identifiable mutations of the tyrosinase gene, particularly in OCA1B, suggests that more complex mutation mechanisms of this gene are common in OCA.
Bornholm eye disease (BED) consists of X-linked high myopia, high cylinder, optic nerve hypoplasia, reduced electroretinographic flicker with abnormal photopic responses, and deuteranopia. The disease maps to chromosome Xq28 and is the first designated high-grade myopia locus (MYP1). We studied a second family from Minnesota with a similar X-linked phenotype, also of Danish descent. All affected males had protanopia instead of deuteranopia. Methods: X chromosome genotyping, fine-point mapping, and haplotype analysis of the DNA from 22 Minnesota family individuals (8 affected males and 5 carrier females) and 6 members of the original family with BED were performed. Haplotype comparisons and mutation screening of the red-green cone pigment gene array were performed on DNA from both kindreds. Results: Significant maximum logarithm of odds scores of 3.38 and 3.11 at = 0.0 were obtained with polymorphic microsatellite markers DXS8106 and DXYS154, respectively, in the Minnesota family. Haplotype analysis defined an interval of 34.4 cM at chromosome Xq27.3-Xq28. Affected males had a red-green pigment hybrid gene consistent with protanopia. We genotyped Xq27-28 polymorphic markers of the family with BED, and narrowed the critical interval to 6.8 cM. The haplotypes of the affected individuals were different from those of the Minnesota pedigree. Bornholm eye disease-affected individuals showed the presence of a green-red hybrid gene consistent with deuteranopia. Conclusions: Because of the close geographic origin of the 2 families, we expected affected individuals to have the same haplotype in the vicinity of the same mutation. Mapping studies, however, suggested independent mutations of the same gene. The red-green and green-red hybrid genes are common X-linked color vision defects, and thus are unrelated to the high myopia and other eye abnormalities in these 2 families. Clinical Relevance: X-linked high myopia with possible cone dysfunction has been mapped to chromosome Xq28 with intervals of 34.4 and 6.8 centimorgan for 2 families of Danish origin.
Asthma is an inflammatory airways disease associated with intermittent respiratory symptoms, bronchial hyper-responsiveness (BHR) and reversible airflow obstruction and is phenotypically heterogeneous. Patterns of clustering and segregation analyses in asthma families have suggested a genetic component to asthma. Previous studies reported linkage of BHR and atopy to chromosomes 5q (refs 7-9), 6p (refs 10-12), 11q (refs 13-15), 14q (ref. 16), and 12q (ref. 17) using candidate gene approaches. However, the relative roles of these genes in the pathogenesis of asthma or atopy are difficult to assess outside of the context of a genome-wide search. One genome-wide search in atopic sib pairs has been reported, however, only 12% of their subjects had asthma. We conducted a genome-wide search in 140 families with > or = 2 asthmatic sibs, from three racial groups and report evidence for linkage to six novel regions: 5p15 (P = 0.0008) and 17p11.1-q11.2 (P = 0.0015) in African Americans; 11p15 (P = 0.0089) and 19q13 (P = 0.0013) in Caucasians; 2q33 (P = 0.0005) and 21q21 (P = 0.0040) in Hispanics. Evidence for linkage was also detected in five regions previously reported to be linked to asthma-associated phenotypes: 5q23-31 (P = 0.0187), 6p21.3-23 (P = 0.0129), 12q14-24.2 (P = 0.0042), 13q21.3-qter (P = 0.0014), and 14q11.2-13 (P = 0.0062) in Caucasians and 12q14-24.2 (P = 0.0260) in Hispanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.