PURPOSE The COVID-19 pandemic remains a public health emergency of global concern. Determinants of mortality in the general population are now clear, but specific data on patients with cancer remain limited, particularly in Latin America. MATERIALS AND METHODS A longitudinal multicenter cohort study of patients with cancer and confirmed COVID-19 from Oncoclínicas community oncology practice in Brazil was conducted. The primary end point was all-cause mortality after isolation of the SARS-CoV-2 by Real-Time Polymerase Chain Reaction (RT-PCR) in patients initially diagnosed in an outpatient environment. We performed univariate and multivariable logistic regression analysis and recursive partitioning modeling to define the baseline clinical determinants of death in the overall population. RESULTS From March 29 to July 4, 2020, 198 patients with COVID-19 were prospectively registered in the database, of which 167 (84%) had solid tumors and 31 (16%) had hematologic malignancies. Most patients were on active systemic therapy or radiotherapy (77%), largely for advanced or metastatic disease (64%). The overall mortality rate was 16.7% (95% CI, 11.9 to 22.7). In univariate models, factors associated with death after COVID-19 diagnosis were age ≥ 60 years, current or former smoking, coexisting comorbidities, respiratory tract cancer, and management in a noncurative setting ( P < .05). In multivariable logistic regression and recursive partitioning modeling, only age, smoking history, and noncurative disease setting remained significant determinants of mortality, ranging from 1% in cancer survivors under surveillance or (neo)adjuvant therapy to 60% in elderly smokers with advanced or metastatic disease. CONCLUSION Mortality after COVID-19 in patients with cancer is influenced by prognostic factors that also affect outcomes of the general population. Fragile patients and smokers are entitled to active preventive measures to reduce the risk of SARS-CoV-2 infection and close monitoring in the case of exposure or COVID-19-related symptoms.
Considering the low therapeutic index of the aminoglycosides it is mandatory to monitor serum concentrations (SC) either to obtain therapeutic levels or to avoid toxic levels. The SC of amikacin (AMK) was evaluated in 24 inpatients in an intensive care unit of Hospital São João, mean age (+/- SD) 45.5 +/- 18.57 years. In 62.5% of the patients it was shown that SC (mean +/- SD, 16.87 +/- 1.62) was inferior to the therapeutic range. In 33.3% the values (SC 25.85 +/- 3.77) were within the therapeutic window (> 20 micrograms/ml; < 35 micrograms/ml). Only 1 patient attained toxic levels (> 35 micrograms/ml). In 4 of the patients with initial SC < 20 micrograms/ml, dosage was adjusted and thereafter therapeutic value was obtained (SC 24.65 +/- 3.38). The relation between the administered dose and the dosage usually recommended (weight X 15mg/day) was calculated. In the majority of our patients (the so-called "critically ill patients") the recommended dosages of AMK need to be increased in order to get the desired SC. In the population of this study a dosage of about 120% relative to the initial recommended dosage was necessary.
1558 Background: COVID-19 is a challenge for clinical decision-making in cancer patients and the allocation of healthcare resources. An accurate prognosis prediction to effectively triage patients is needed, especially in the community oncology practice. Methods:Nationwide cohort from Oncoclínicas Brazil was used to validate previously developed multivariable logistic regression (mLR) model (Ferrari et al, JCO GO 2021) and to construct a machine learning Random Forest (RF) algorithm as predictor of 30-day mortality after SARS-CoV-2 detection by RT-PCR in cancer patients diagnosed in an outpatient setting. To find the most important baseline clinical determinants of early COVID-19-related death via Gini index, a RF with 100,000 trees was trained in 75% of the dataset, and the performance was assessed in the remaining 25%. We then compared the accuracy of different models in terms of sensitivity, specificity and area under the receiver operating characteristics curves (AUC). Results:From March to December 2020, 533 patients with COVID-19 were prospectively registered in the database. Median age was 60 years (19-93) and 67% were female. Most frequent cancers were breast in 34%, hematological in 16%, and gastrointestinal in 15%. Comorbidities were common (52%), as was current/former smoking history (17%). Most patients were on active systemic therapy or radiotherapy (84%) in the advanced or metastatic disease setting (55%). The overall mortality rate was 15% (CI95% 12%-18%). We validated the original mLR model trained in the first 198 patients: management in a non-curative setting (odds ratio [OR] 3.7), age ≥ 60 years (OR 2.3), and current/former smoking (OR 1.9) were significant predictors of death in the expanded cohort. Presence of comorbidities (OR 1.9) also defined poor outcome in the updated mLR model, which yielded low sensitivity (74%), specificity (68%) and AUC (0.78). With RF modeling, the most significant predictors of 30-day death after COVID-19 (in decreasing order) were older age, treatment of advanced or metastatic disease, tumor type (respiratory tract, brain and unknown primary cancers had higher mortality), COVID-related symptom burden at baseline evaluation and treatment regimen (immunotherapy combinations had higher mortality). The RF model demonstrated high sensitivity (89%), specificity (88%) and AUC (0.96). Conclusions:The results highlight the possibility that machine learning algorithms are able to predict early mortality after COVID-19 in cancer patients with high accuracy. The proposed prediction model may be helpful in the prompt identification of high-risk patients based on clinical features alone, without having to wait for the results of additional tests such as laboratory or radiologic studies. It can also help prioritize medical resources and redefine vaccination strategies. A web-based mortality risk calculator will be created for clinical decision support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.