Important information about yellow fever mosquito Aedes aegypti (Diptera: Culicidae) and the identification and quantification of the main Brazilian breeding sites for this vector are highlighted in this chapter. Although most of the control actions have been directed to the adult (winged) phase of the vector, the reduction of immature forms (eggs and larvae) of Aedes is the most important way to control these insects, especially to eliminate breeding sites. These are, in principle, the most important targets for mosquito population control in order to reduce infestation and, consequently, the transmission and incidence of diseases transmitted by insect vectors. Thus, this chapter presents a compilation and discussion that allows comparing characteristics and similarities of Aedes species.
The development of new insecticides for vector control that are toxicologically safe and eco-friendly (such as those obtained from industrial by-products) is an important public health concern. Previous research has shown that the obtained tCNSL (technical cashew nutshell liquid) + NatCNSLS (sodium tCNSL sulfonate mixture) emulsion displayed both surfactant properties and larvicidal activity (LC50-24 h 110.6 mg/L). Thus, the emulsion is considered a promising alternative product for the control of Aedes aegypti. The goal of this study was an ecotoxicological evaluation of the tCNSL + NatCNSLS mixture emulsion and its components. In addition, we compared the toxicity of the tCNSL + NatCNSLS mixture emulsion with toxicity data from larvicide currently recommended by the World Health Organization (WHO). Ecotoxicological tests were performed to assess acute toxicity, phytotoxicity, cytotoxicity, genotoxicity, and mutagenicity using Daphnia similis, Pseudokirchneriella subcapitata, Oreochromis niloticus, Allium cepa, and Salmonella enterica serovar Typhimurium. Regarding acute toxicity, D. similis was the most sensitive test organism for the three evaluated products, followed by P. subcapitata and O. niloticus. The highest acute toxicity product was tCNSL. The tCNSL + NatCNSLS mixture emulsion did not show cytotoxic, genotoxic, or mutagenic effects, and showed low acute toxicity to D. similis. In addition, the tCNSL + NatCNSLS mixture emulsion presented a lower or similar toxicological classification to the larvicides recommended by the WHO. Therefore, ecotoxicological tests suggest that the tCNSL + NatCNSLS mixture emulsion can be considered a larvicide environmentally safe way to control Ae. aegypti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.