Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 nonneurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS.
In murine and canine animal models, mutations in the Arylsulfatase G gene (ARSG) cause a particular lysosomal storage disorder characterized by neurological phenotypes. Recently, two variants in the same gene were found to be associated with an atypical form of Usher syndrome in humans, leading to visual and auditory impairment without the involvement of the central nervous system. In this study, we identified three novel pathogenic variants in ARSG, which segregated recessively with the disease in two families from Portugal. The probands were affected with retinitis pigmentosa and sensorineural hearing loss, generally with an onset of symptoms in their fourth decade of life. Functional experiments showed that these pathogenic variants abolish the sulfatase activity of the Arylsulfatase G enzyme and impede the appropriate lysosomal localization of the protein product, which appears to be retained in the endoplasmic reticulum. Our data enable to definitely confirm that different biallelic variants in ARSG cause a specific deaf‐blindness syndrome, by abolishing the activity of the enzyme it encodes.
BackgroundCOL11A1 is a large complex gene around 250 kb in length and consisting of 68 exons. Pathogenic mutations in the gene can result in Stickler syndrome, Marshall syndrome or Fibrochondrogenesis. Many of the mutations resulting in either Stickler or Marshall syndrome alter splice sites and result in exon skipping, which because of the exon structure of collagen genes usually leaves the message in-frame. The mutant protein then exerts a dominant negative effect as it co-assembles with other collagen gene products. To date only one large deletion of 40 kb in the COL11A1, which was detected by RT-PCR, has been characterized. However, commonly used screening protocols, utilizing genomic amplification and exon sequencing, are unlikely to detect such large deletions. Consequently the frequency of this type of mutation is unknown.Case presentationsWe have used Multiplex Ligation-Dependent Probe Amplification (MLPA) in conjunction with exon amplification and sequencing, to analyze patients with clinical features of Stickler syndrome, and have detected six novel deletions that were not found by exon sequencing alone.ConclusionExon deletions appear to represent a significant proportion of type 2 Stickler syndrome. This observation was previously unknown and so diagnostic screening of COL11A1 should include assays capable of detecting both large and small deletions, in addition to exon sequencing.
These observations suggest that deletion of the 5' exons of COL4A6 and of the common promoter of the COL4A5 and COL4A6 genes is not essential for the development of leiomyomatosis in patients with ATS, and that COL4A5_COL4A6 deletions extending into COL4A6 exon 3 may not result in ATS-DL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.