Discharge of drill cuttings into the ocean during drilling of offshore oil wells can impact benthic communities through an increase in the concentrations of suspended particles in the water column and sedimentation of particles on the seafloor around the drilling installation. The present study assessed effects of water-based drill cuttings, barite, bentonite, and natural sediments on shallow- and deep-water calcareous algae in short-term (30 d) and long-term (90 d) experiments, using 2 species from Peregrino's oil field at Campos Basin, Brazil: Mesophyllum engelhartii and Lithothamnion sp. The results were compared with the shallow-water species Lithothamnion crispatum. Smothering and burial exposures were simulated. Oxygen production and fluorescence readings were recorded. Although less productive, M. engelhartii was as sensitive to stress as Lithothamnion sp. Mesophyllum engelhartii was sensitive to smothering by drill cuttings, barite, and bentonite after 60 d of exposure and was similarly affected by natural sediments after 90 d. These results indicate that smothering by sediments caused physical effects that might be attributable to partial light attenuation and partial restriction on gas exchange but did not kill the calcareous algae in the long term. However, 1-mo burial by either natural sediments or drill cuttings was sufficient after 60 d for both species to reduce oxygen production, and the algae were completely dead under both sources of sediments.
Petroleum refineries generate large amounts of wastewaters, which can have acute/chronic toxicity toward aquatic organisms. Previous studies have shown that many contaminants can be responsible for this toxicity, among them ammonia, sulfide, cyanide, phenols and hydrocarbons. In the study reported herein, the cause of the chronic toxicity of a biotreated petroleum refinery wastewater was investigated by applying the TIE methodology using the microcrustacean Ceriodaphnia dubia. Five samples were analyzed, and the results suggest that copper is the primary toxicant, showing a strong correlation with wastewater toxicity in Phase III. Other metal contaminants, such as zinc and nickel, are present in the samples at toxic concentrations and these may also contribute (to a lesser degree) toward the toxicity. In the case of one sample, the toxicity was attributed to polycyclic aromatic hydrocarbons (PAHs), possibly benzo(a)pyrene, which was present at a concentration toxic to C. dubia. Although the values for the physicochemical parameters of the samples were below Brazilian environmental regulation limits (CONAMA 430), this was not sufficient to prevent chronic toxicity toward aquatic life, indicating that these limits are relatively high.
Petroleum refineries generate a large amount of effluents, which if released without appropriate treatment can cause chronic effects to organisms. Most studies show that many contaminants can be responsible for the toxicity, among them ammonia, sulfide, cyanide, phenol and hydrocarbons. The present study evaluated the cause of the chronic toxicity of a refinery wastewater from Brazil using the organism Ceriodaphnia dubia in short-term test. The results suggest that metals such as barium, manganese and strontium can be contributing for the toxicity of the wastewater. Besides this, conductivity could be contributing to the toxicity too, since the level is high for the test organism evaluated.
The fish embryo test (FET) is an alternative to the classic freshwater toxicity test used to assess environmental hazards and risks to fish. This test has been standardized and adopted by the Organization for Economic and Cooperation and Development (OECD). As salinity may affect the substances’ toxicity, we describe the development of an alternative euryhaline test species for embryonic ecotoxicological tests: the Brazilian silverside Atherinella brasiliensis (Quoy & Gaimard, 1825). This species is broadly distributed along the coast of South America and is able to inhabit a broad range of environmental and saline conditions. Ours is the first study on the maintenance of a native South American species for natural reproduction and the generation of embryos for tests. The embryos used are transparent and possess fluorescent cells which have only been seen in a few species and which may be used as markers, making it an alternative assessment tool for the lethal and sublethal substances in marine and estuarine environments. We provide a detailed description and analysis of embryonic development under different salinities and temperatures. The embryos and larvae developed in similar ways at different salinities, however as temperatures increased, mortality also increased. We considered the effects of the reference toxicants Zn2+ and SDS using a protocol similar to the FET that was standardized for zebrafish. Brazilian silverside embryos are as sensitive as freshwater, or euryhaline fish, to the surfactant but are more resistant to metals prior to hatching. We were able to show the advantages of the Brazilian silverside as a model for a marine fish embryo test (FETm) with high levels of reproducibility and little contaminated waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.