Automated DNA sequencing was used to characterize mutations associated with rifampin resistance in a 69-bp region of the gene, rpoB, encoding the P subunit of RNA polymerase in Mycobacterium tuberculosis. The data confirmed that greater than 90% of rifampin-resistant strains have sequence alterations in this region and showed that most are missense mutations. The analysis also identified several mutant rpoB alleles not previously associated with resistant organisms and one short region of rpoB that had an unusually high frequency of insertions and deletions. Although many strains with an identical IS6110 restriction fragment length polymorphism pattern have the same variant rpoB allele, some do not, a result that suggests the occurrence of evolutionary divergence at the clone level.
To understand the mechanisms governing molecular evolution of the streptokinase gene (skn), a 384 bp DNA fragment encoding two variable regions of the molecule was characterized in 47 isolates of Streptococcus pyogenes. The results reveal that alleles of the streptokinase gene have a mosaic structure, and provide strong evidence for intragenic recombination. Moreover, organisms that are well differentiated in overall chromosomal character have identical skn alleles, which suggests that horizontal gene transfer and recombination have participated in the evolution of this locus. No simple relationship between skn allele and serum opacity factor production or specific disease was identified. The predicted amino acid sequences of highly divergent skn alleles are strikingly similar in hydrophilicity and hydrophobicity profiles, distribution of amphipathic and flexible regions, surface probability plots, and antigenic indices, indicating that despite extensive nucleotide polymorphism in the two skn variable regions, selective pressure has constrained overall structural divergence. These results add to an important emerging theme that intragenic recombination plays a critical role in diversifying genes coding for streptococcal virulence factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.