Higher electricity tariffs have accentuated the importance of the trade-off between lowering investment cost by buying pipes with smaller diameters and the higher operating costs that result from the increased power requirement to overcome the higher friction losses of the thinner pipes. The Soil Water Irrigation Planning and Energy Management (SWIP-E) mathematical programming model was developed and applied in this paper to provide decision support regarding the optimal mainline pipe diameter, irrigation system delivery capacity and size of the irrigation system. SWIP-E unifies the interrelated linkages between mainline pipe diameter choice and the timing of irrigation events in conjunction with time-of-use electricity tariffs. The results showed that the large centre pivot resulted in higher net present values than the smaller centre pivot and the lower delivery capacities were more profitable than higher delivery capacities. More intense management is, however, necessary for delivery capacities lower than 12 mm•d−1 to minimise irrigation during peak timeslots. Variable electricity costs are highly dependent on the interaction between kilowatt requirement and irrigation hours. For the large centre pivot the interaction is dominated by changes in kilowatt whereas the effect of irrigation hours in relation to kilowatts is more important for smaller pivots. Optimised friction loss expressed as a percentage of the length of the pipeline was below 0.6%, which is much lower than the design norm of 1.5% that is endorsed by the South African Irrigation Institute. The main conclusion is that care should be taken when applying the friction loss norm when sizing irrigation mainlines because the norm will result in pipe diameters that are too small, consequently resulting in increased lifecycle operating costs. A clear need for the revision of the friction loss design norm was identified by this research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.