Pasteurization of donated human milk preserves it for storage and makes it safe for feeding, but at the expense of its composition, nutritional values and functions. Here, we aimed to investigate the impact of Holder Pasteurization (HoP) and High Pressure Processing (HPP) methods on miRNA in human milk and to evaluate impact of these changes on miRNA functions. Milk samples obtained from women in 50
th
day of lactation (n = 3) were subjected either to HoP, HPP or remained unpasteurized as a control. Subsequently, miRNA was isolated from whole material and exosomal fraction and sequenced with Illumina NextSeq 500. Sequencing data were processed, read counts were mapped to miRNA and analyzed both quantitatively with DESeq2 and functionally with DIANA mirPath v.3. While HPP caused statistically insignificant decrease in number of miRNA reads compared to unprocessed material, HoP led to 82-fold decrease in whole material (p = 0.0288) and 302-fold decrease in exosomes (p = 0.0021) not leaving enough reads for further analysis. Changes in composition of miRNA fraction before and after HPP indicated uneven stability of individual miRNAs under high pressure conditions, with miR-30d-5p identified as relatively stable and miR-29 family as sensitive to HPP. Interestingly, about 2/3 of unprocessed milk miRNA content consists of only 10 distinct miRNAs with miR-148a-3p at the top. Functional analysis of most abundant human milk miRNAs showed their involvement in signaling pathways, cell communication, proliferation and metabolism that are obviously important in rapidly growing infants. Functions of miRNAs which suffered the greatest depletion during HPP were similar to roles of the majority of unprocessed human milk’s miRNA, which indicates that those functions may be weakened although not completely lost. Our findings indicate that HPP is less detrimental to human milk miRNAs than HoP and should be considered in further research on recommended processing procedures for human milk banks.
B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL) is a genetically heterogeneous blood cancer characterized by abnormal expansion of immature B cells. Although intensive chemotherapy provides high cure rates in a majority of patients, subtypes harboring certain genetic lesions, such as
MLL
rearrangements or
BCR‐ABL1
fusion, remain clinically challenging, necessitating a search for other therapeutic approaches. Herein, we aimed to validate antioxidant enzymes of the thioredoxin system as potential therapeutic targets in BCP‐ALL. We observed oxidative stress along with aberrant expression of the enzymes associated with the activity of thioredoxin antioxidant system in BCP‐ALL cells. Moreover, we found that auranofin and adenanthin, inhibitors of the thioredoxin system antioxidant enzymes, effectively kill BCP‐ALL cell lines and pediatric and adult BCP‐ALL primary cells, including primary cells cocultured with bone marrow‐derived stem cells. Furthermore, auranofin delayed the progression of leukemia in
MLL
‐rearranged patient‐derived xenograft model and prolonged the survival of leukemic NSG mice. Our results unveil the thioredoxin system as a novel target for BCP‐ALL therapy, and indicate that further studies assessing the anticancer efficacy of combinations of thioredoxin system inhibitors with conventional anti‐BCP‐ALL drugs should be continued.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.