In this study the recently developed electron density of delocalized bonds (EDDB) is used to define a new measure of aromaticity in molecular rings. The relationships between bond-length alternation, electron delocalization and diatropicity of the induced ring current are investigated for a test set of representative molecular rings by means of correlation and principal component analyses involving the most popular aromaticity descriptors based on structural, electronic, and magnetic criteria. Additionally, a qualitative comparison is made between EDDB and the magnetically induced ring-current density maps from the ipsocentric approach for a series of linear acenes. Special emphasis is given to the comparative study of the description of cyclic delocalization of electrons in a wide range of organic aromatics in terms of the kekulean multicenter index KMCI and the newly proposed EDDB k index.
A novel method for investigating the multicenter bonding patterns in molecular systems by means of the so-called Electron Density of Delocalized Bonds (EDDB) is introduced and discussed. The EDDB method combines the concept of Jug's bond-order orbitals and the indirect ("through-bridge") interaction formalism and opens up new opportunities for studying the interplay between different atomic interactions as well as their impact on both local and global resonance stabilization in systems of conjugated bonds. Using several illustrative examples we demonstrate that the EDDB approach allows for a reliable quantitative description of diverse multicenter delocalization phenomena (with special regard to evaluation of the aromatic stabilization in molecular systems) within the framework of a consistent theoretical paradigm.
In this work we extend the concept of migrating Clar's sextets to explain local aromaticity trends in linear acenes predicted by theoretical calculations and experimental data. To assess the link between resonance and reactivity and to rationalize the constant-height AFM image of pentacene we used the electron density of delocalized bonds and other functions of the one-electron density from conceptual density functional theory. The presented results provide evidence for migration of Clar's π-sextets and larger circuits in these systems, and clearly show that the link between the theoretical concept of aromaticity and the real electronic structure entails the separation of intra- and inter-ring resonance effects, which in the case of [n]acenes (n = 3, 4, 5) comes down to solving a system of simple linear equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.