This paper addresses the need for sizing of rotors for multirotor vehicle applications such as personal air transport, delivery, surveillance, and photography. A methodology for the propeller and motor selection is developed and augmented with flight time estimation capabilities. Being multirotor-specific it makes use of the platform’s simplicity to rapidly provide a set of off-the-shelf components ready to be used in the vehicle. Use of operating points makes the comparison process fast, precise, and tailored to specific application. The method is easily implemented in software to provide an automated tool. Furthermore, clearly defined input and output parameters make it also usable as a module in other multicriteria optimisation algorithms. The new methodology is validated through comparison with a consumer-grade drone and the calculated results are compliant with manufacturer’s specification in terms of maximum hover time.
eVTOLs are receiving a lot of attention as a potential solution to urban air mobility challenges. Many configurations are multirotors, which are open loop unstable, therefore very susceptible to actuator failures. Due to their usually short mission duration (20-30 min), fault-tolerance of the propulsion system is of greater importance then reliability. Thus, novel approaches to enhance this capability are required. This study proposes a new fault-tolerant propulsion system using 4-phase switched reluctance motors. It is designed for an 8-10 kg scale multirotor eVTOL, to replace redundant coaxial brushless DC motors with a single fault-tolerant drive. Acknowledging the role of fault-tolerant control algorithms, the propulsion system is validated in terms of the loss of effectiveness metric, typically used in the evaluation of control solutions. The switched reluctance motor propulsion system was found to be highly resilient to open phase and current sensor faults, but susceptible to position sensor faults. This can, however, be mitigated with sensorless control solution. Extending the findings to full-scale eVTOLs is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.