A theory of Efficient Market Hypothesis (EMH) has been introduced by Fama to analyse financial markets. In particular the EMH theory has been proven in real cases under different conditions, including financial crises and frauds. The EMH assumes to examine the prediction accuracy of models designed on retrospective data. Such prediction models could be designed in different ways that motivated us to explore Machine Learning (ML) methods known for building models providing a high prediction performance. In this study we propose a "deep" learning method for building high-performance prediction models. The proposed method is based on the Group Method of Data Handling (GMDH) that is the deep learning paradigm capable of building multilayer neural-network models of a near-optimal complexity on given data. We show that the developed GMDH-type neural network has outperformed the models built by the conventional ML methods on the Warsaw Stock Exchange data. It is important that the complexity of the designed GMDH-type neuralnetworks is defined by the number of layers and connections between neurons. The performances of models were compared in terms of the prediction errors. We report a significantly smaller prediction error of the proposed method than that of the conventional autoregressive and "shallow" neural-network models. This finally allows us to conclude that traders will be advantaged by the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.