An inductive power transfer subsystem for an integrated motor drive is presented in this paper. First, the concept of an integrated motor drive system is overviewed, and its main components are described. Next, the paper is focused on its inductive power transfer subsystem, which includes a magnetically coupled resonant circuit and two-stage energy conversion with an appropriate control method. Simplified complex domain analysis of the magnetically coupled resonant circuit is provided and the applied procedure for its component selection is explained. Furthermore, the prototype of the integrated motor drive system with its control is described. Finally, the prototype based on the gallium nitride field effect transistors (GaN FET) inductive power transfer subsystem is experimentally tested, confirming the feasibility of the concept.
This paper deals with the constraints imposed on error compensation systems by their implementation strategies. Constraints stemming from the structure of the control system with an NCK architecture of the ADCBI type are presented. Practical realizations of compensation and potential solutions offered by contemporary commercial CNC controllers are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.