Abstract. In this paper we apply the Asymmetric Detrended Fluctuation Analysis to the RR intervals time series. The mathematical background of the ADFA method is discussed in the context of heart rate variability and heart rate asymmetry. We calculate the α ା and α ି ADFA scaling exponents for 100 RR intervals time series recorded in a group of healthy volunteers (20-40 years of age) with the use of the local ADFA. It is found that on average α ା < α ି , and that locally α ି dominates most of the time over α ା -both results are highly statistically significant.
Sample Entropy (SampEn) is a popular method for assessing the unpredictability of biological signals. Its calculation requires to preliminarily set the tolerance threshold r and the embedding dimension m. Even if most studies select m=2 and r=0.2 times the signal standard deviation, this choice is somewhat arbitrary. Effects of different r and m values on SampEn have been rarely assessed, because of the high computational burden of this task. Recently, however, a fast algorithm for estimating correlation sums (Norm Component Matrix, NCM) has been proposed that allows calculating SampEn quickly over wide ranges of r and m. The aim of our work is to describe the structure of SampEn of physiological signals with different complex dynamics as a function of m and r and in relation to the correlation sum. In particular, we investigate whether the criterion of "maximum entropy" for selecting r previously proposed for Approximate Entropy, also applies to SampEn; and whether information from correlation sums provides indications for the choice of r and m. For this aim we applied the NCM algorithm on electromyographic and mechanomyographic signals during isometric muscle contraction, estimating SampEn over wide ranges of r (0.01 ≤ r ≤ 5) and m (from 1 to 11). Results indicate that the "maximum entropy" criterion to select r in Approximate Entropy cannot be applied to SampEn. However, the analysis of correlation sums alternatively suggests to choose r that at any m maximizes the number of "escaping vectors", i.e., data points effectively contributing to the SampEn estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.