l-Asparaginase is a key therapeutic agent for treatment of childhood acute lymphoblastic leukemia (ALL). There is wide individual variation in pharmacokinetics, and little is known about its metabolism. The mechanisms of therapeutic failure with l-asparaginase remain speculative. Here, we now report that 2 lysosomal cysteine proteases present in lymphoblasts are able to degrade l-asparaginase. Cathepsin B (CTSB), which is produced constitutively by normal and leukemic cells, degraded asparaginase produced by Escherichia coli (ASNase) and Erwinia chrysanthemi. Asparaginyl endopeptidase (AEP), which is overexpressed predominantly in high-risk subsets of ALL, specifically degraded ASNase. AEP thereby destroys ASNase activity and may also potentiate antigen processing, leading to allergic reactions. Using AEP-mediated cleavage sequences, we modeled the effects of the protease on ASNase and created a number of recombinant ASNase products. The N24 residue on the flexible active loop was identified as the primary AEP cleavage site. Sole modification at this site rendered ASNase resistant to AEP cleavage and suggested a key role for the flexible active loop in determining ASNase activity. We therefore propose what we believe to be a novel mechanism of drug resistance to ASNase. Our results may help to identify alternative therapeutic strategies with the potential of further improving outcome in childhood ALL.
Using proteins in a therapeutic context often requires engineering to modify functionality and enhance efficacy. We have previously reported that the therapeutic antileukemic protein macromolecule Escherichia coli L-asparaginase is degraded by leukemic lysosomal cysteine proteases. In the present study, we successfully engineered L-asparaginase to resist proteolytic cleavage and at the same time improve activity. We employed a novel combination of mutant sampling using a genetic algorithm in tandem with flexibility studies using molecular dynamics to investigate the impact of lid-loop and mutations on drug activity. Applying these methods, we successfully predicted the more active L-asparaginase mutants N24T and N24A. For the latter, a unique hydrogen bond network contributes to higher activity. Furthermore, interface mutations controlling secondary glutaminase activity demonstrated the importance of this enzymatic activity for drug cytotoxicity. All selected mutants were expressed, purified, and tested for activity and for their ability to form the active tetrameric form. By introducing the N24A and N24A R195S mutations to the drug L-asparaginase, we are a step closer to individualized drug design. (Blood. 2011; 117(5):1614-1621)
Moderate heating (40–50°C) of immunoglobulins makes them accessible for binding with Congo Red and some related highly associated dyes. The binding is specific and involves supramolecular dye ligands presenting ribbon‐like micellar bodies. The L chain λ dimer, which upon heating disclosed the same binding requirement with respect to supramolecular dye ligands, was used in this work to identify the site of their attachment. Two clearly defined dye–protein (L λ chain) complexes arise upon heating, here called complex I and complex II. The first is formed at low temperatures (up to 40–45°C) and hence by a still native protein, while the formation of the second one is associated with domain melting above 55°C. They contain 4 and 8 dye molecules bound per L chain monomer, respectively. Complex I also forms efficiently at high dye concentration even at ambient temperature. Complex I and its formation was the object of the present studies. Three structural events that could make the protein accessible to penetration by the large dye ligand were considered to occur in L chains upon heating: local polypeptide chain destabilization, VL‐VL domain incoherence, and protein melting. Of these three possibilities, local low‐energy structural alteration was found to correlate best with the formation of complex I. It was identified as decreased packing stability of the N‐terminal polypeptide chain fragment, which as a result made the V domain accessible for dye penetration. The 19‐amino acid N‐terminal fragment becomes susceptible to proteolytic cleavage after being replaced by the dye at its packing locus. Its splitting from the dye–protein complex was proved by amino acid sequence analysis. The emptied packing locus, which becomes the site that holds the dye, is bordered by strands of amino acids numbered 74–80 and 105–110, as shown by model analysis. The character of the temperature‐induced local polypeptide chain destabilization and its possible role in intramolecular antibody signaling is discussed. © 2001 John Wiley & Sons, Inc. Biopolymers 59: 446–456, 2001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.