In this paper we present the Grid Scheduling Simulator (GSSIM), a comprehensive and advanced simulation tool for distributed computing problems. Based on a classification of simulator features proposed in the paper, we define problems that can be simulated using GSSIM and compare it to other simulation tools. We focus on an extension of our previous works including advanced workload generation methods, simulation of a network with advance reservation features, handling specific application performance models and energy efficiency modeling. Some important features of GSSIM are demonstrated by three diverse experiments conducted with the use of the tool. We also present an advanced web tool for the remote management and execution of simulation experiments, which makes GSSIM the comprehensive distributed computing simulator available on the Web.
New intensive farming systems have resulted in a narrowing of the genetic diversity used in breeding programs. Breeders are looking for new sources of variation of specific traits to make genetic progress in adaptation to changing environmental conditions. Genomics-based plant germplasm research seeks to apply the techniques of genomics to germplasm characterization. Using these new methods and obtained data, plant breeders can increase the rate of genetic gains in specific breeding programs. Due to the complexity of heterogeneous sources of information, it is necessary to collect large quantities of referenced data. Molecular platforms are becoming increasingly important for the development of strategic germplasm resources for more effective molecular breeding of new cultivars. Following this trend in plant breeding, the AgroGenome portal for precise breeding programs was developed based on data collected for accessions stored in the Polish Genebank. It combines passport data of genotypes, phenotypic characteristics and interactive GWAS analysis visualization on the Manhattan plots based on GWAS results and on JBrowse interface. The AgroGenome portal can be utilized by breeders or researchers to explore diversity among investigated genomes. It is especially important to identify markers for tracking specific traits and identify QTL. The AgroGenome portal facilitates the exploitation and use of plant genetic resources stored in the Polish Genebank.
Various models and architectures for scheduling in grids may be found both in the literature and in practical applications. They differ in the number of scheduling components, their autonomy, general strategies, and the level of decentralization. The major aim of our research is to study impact of these differences on the overall performance of a Grid. To this end, in the paper we compare performance of two specific Grid models: one centralized and one distributed. We use GSSIM simulator to perform accurate empirical tests of algorithms. This paper is a starting point of an experimental study of centralized and decentralized approaches to Grid scheduling within the scope of the CoreGrid Resource Management and Scheduling Institute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.