Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.DOI:
http://dx.doi.org/10.7554/eLife.05864.001
Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth.
For modeling the magnetic properties of concentrated and diluted magnetic semiconductors, we use the Kondo-lattice model. The magnetic phase diagram is derived by inspecting the static susceptibility of itinerant band electrons, which are exchange coupled to localized magnetic moments. It turns out that rather low band occupations favour a ferromagnetic ordering of the local moment systems due to an indirect coupling mediated by a spin polarization of the itinerant charge carriers. The disorder in diluted systems is treated by adding a CPA-type concept to the theory. For almost all moment concentrations x, ferromagnetism is possible, however, only for carrier concentrations n distinctly smaller than x. The charge carrier compensation in real magnetic semiconductors (in Ga1−xMnxAs by e.g. antisites) seems to be a necessary condition for getting carrier induced ferromagnetism.
Pollen tubes are extremely rapidly growing plant cells whose morphogenesis is determined by spatial gradients in the biochemical composition of the cell wall. We investigate the hypothesis (MP) that the distribution of the local mechanical properties of the wall, corresponding to the change of the radial symmetry along the axial direction, may lead to growth oscillations in pollen tubes. We claim that the experimentally observed oscillations originate from the symmetry change at the transition zone, where both intervening symmetries (cylindrical and spherical) meet. The characteristic oscillations between resonating symmetries at a given (constant) turgor pressure and a gradient of wall material constants may be identified with the observed growth-cycles in pollen tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.