Postexercise cooling decreased microvascular perfusion and muscle metabolic activity. These findings are consistent with the suggested mechanisms by which CWI is hypothesized to improve local muscle recovery.
*These Authors contributed equally to this work. ', 'mandibular', 'foramen', 'anatomy', 'embryology', 'anthropology', and 'mental'. The reference lists of all the relevant studies and existing reviews were screened for additional relevant publications. Basing on relevant manuscripts, this short review about the anatomy, embryology and anthropology of the mandible and the mandibular foramen was written. (Folia Morphol 2013; 71, 4: 285-292)
The reliability of near infrared spectroscopy derived tissue oxygenation index (TOI) and total haemoglobin concentration (tHb) were examined during continuous (CR) and interval (INT) running. In a repeated measures design, 10 subjects twice performed 30 min of CR at 70% of their peak treadmill velocity, followed by 10 bouts of INT at 100%. Between trial reliability of mean and amplitude changes in TOI and tHb during CR were determined. Muscle de-oxygenation and re-oxygenation rates during INT were calculated using 3 analytical methods; i) linear modelling, ii) minimum and maximum values during work/rest intervals, and iii) mean values during work/rest intervals. Reliability was assessed using coefficient of variation (CV; %). During CR, mean TOI was more reliable (3.5%) compared with TOI amplitude change (34.7%), while mean tHb (12%) was similar to both absolute (9.2%) and relative (10.2%) amplitude changes. During INT, de-oxygenation rates analysed via linear modelling produced the lowest CV (7.2%), while analysis using min-max values produced the lowest CV (9.3%) for re-oxygenation rates. In conclusion, while the variables demonstrated CVs lower than reported changes in training-induced adaptations and/or differences between athletes and controls (23- 450%), practitioners are encouraged to consider the advantages/disadvantages of each method when performing their analysis.
The purpose of this study was to compare the pacing profiles between distance- and duration-based trials of short and long duration. Thirteen trained cyclists completed 2 time-based (6 and 30 min) and 2 distance-based (4 and 20 km) self-paced cycling time trials. Participants were instructed to complete each trial with the highest average power output. Ratings of perceived exertion (RPEs) were measured throughout the trials. Average power output was not different between the 4-km and 6-min trials (324 ± 46 vs 325 ± 45 W; P = .96) or between the 20-km and 30-min trials (271 ± 44 vs 267 ± 38 W; P = .24). Power output was greater on commencement of the distance-based trials when short and long trials were analyzed together. Furthermore, the rate of decline in power output over the 1st 40% of the trial was greater in the 20-km trial than in the 30-min trial (P = .01) but not different between the 4-km and the 6-min trials (P = .13). RPE was greater in the 4-km trial than in the 6-min trial but not different between the 20-km and 30-min trials. These findings indicate that athletes commenced distance-based time trials at relatively higher power outputs than a similar time-based trial. Such findings may result from discrete differences in our ability to judge or predict an exercise endpoint when performing time- and distance-based trials.
Unexpectedly, maximal HR was similar between CON and ECC. Although ECC power output can be predicted from CON peak power output, an incremental eccentric cycling test performed after 3-6 familiarisation sessions may be useful in programming ECC training with healthy and accustomed individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.