In this research, we investigate the connection between an observed enhancement in solid oxide fuel cell stack performance and the evolution of the microstructure of its electrodes. A three dimensional, numerical model is applied to predict the porous ceramic-metal electrode performance on the basis of microstructure morphology. The model features a non-continuous computational domain based on the digital reconstruction obtained using focused ion beam scanning electron microscopy (FIB-SEM) electron nanotomography. The Butler–Volmer equation is used to compute the charge transfer at reaction sites, which are modeled as distinct locally distributed features of the microstructure. Specific material properties are accounted for using interpolated experimental data from the open literature. Mass transport is modeled using the extended Stefan–Maxwell model, which accounts for both the binary, and the Knudsen diffusion phenomena. The simulations are in good agreement with the experimental data, correctly predicting a decrease in total losses for the observed microstructure evolution. The research supports the hypothesis that the performance enhancement was caused by a systematic change in microstructure morphology.
The models of solid oxide fuel cells (SOFCs), which are available in the open literature,may be categorized into two non-overlapping groups: microscale or macroscale. Recent progressin computational power makes it possible to formulate a model which combines both approaches,the so-called multiscale model. The novelty of this modeling approach lies in the combination ofthe microscale description of the transport phenomena and electrochemical reactions’ with thecomputational fluid dynamics model of the heat and mass transfer in an SOFC. In this work,the mathematical model of a solid oxide fuel cell which takes into account the averaged microstructureparameters of electrodes is developed and tested. To gain experimental data, which are used toconfirm the proposed model, the electrochemical tests and the direct observation of the microstructurewith the use of the focused ion beam combined with the scanning electron microscope technique(FIB-SEM) were conducted. The numerical results are compared with the experimental data fromthe short stack examination and a fair agreement is found, which shows that the proposed modelcan predict the cell behavior accurately. The mechanism of the power generation inside the SOFC isdiscussed and it is found that the current is produced primarily near the electrolyte–electrode interface.Simulations with an artificially changed microstructure does not lead to the correct prediction of thecell characteristics, which indicates that the microstructure is a crucial factor in the solid oxide fuelcell modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.