We consider the mixed systems composed of a fixed number of components whose lifetimes are i.i.d. with a known distribution which has a positive and finite variance. We show that a certain of the k-out-of-n systems has the minimal lifetime variance, and the maximal one is attained by a mixture of series and parallel systems. The number of the k-out-of-n system, and the probability weights of the mixture depend on the first two moments of order statistics of the parent distribution of the component lifetimes. We also show methods of calculating extreme system lifetime variances under various restrictions on the system lifetime expectations, and vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.