The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells 1 , 2 . Upon binding to genomic lesions, these enzymes utilise NAD + to modify a plethora of proteins with mono- and poly(ADP-ribose) signals that are important for subsequent chromatin decompaction and repair factor recruitment 3 , 4 . These post-translational modification events are predominantly serine-linked and require HPF1, an accessory factor that is specific for DNA damage response and switches the amino-acid specificity of PARP1/2 from aspartate/glutamate to serine residues 5 – 10 . Here, we report a co-structure of HPF1 bound to the catalytic domain of PARP2 that, in combination with NMR and biochemical data, reveals a composite active site formed by residues from both PARP1/2 and HPF1. We further show that the assembly of this new catalytic centre is essential for DNA damage-induced protein ADP-ribosylation in human cells. In response to DNA damage and NAD + binding site occupancy, the HPF1-PARP1/2 interaction is enhanced via allosteric networks operating within PARP1/2, providing an additional level of regulation in DNA repair induction. As HPF1 forms a joint active site with PARP1/2, our data implicate HPF1 as an important determinant of the response to clinical PARP inhibitors.
Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.
Highlights d Chromatin serine-linked MARylation is constantly produced throughout the cell cycle d ADP-ribosylation reactions consist of distinct initiation and elongation steps d PARG and ARH3 suppression is synthetically lethal because of accumulation of PARylation d ARH3 deficiency increases PARPi resistance that can be exploited therapeutically
Summary: DNA strand breaks recruit PARP1 and its paralogue PARP2 to modify histones and many other substrates with mono- and poly(ADP-ribose) (PAR) 1 – 5 . In DNA damage response, the PAR post-translational modification occurs predominantly on serine amino acids 6 – 8 , which requires HPF1, an accessory factor that switches the amino-acid specificity of PARP1/2 from aspartate/glutamate to serine residues 9 , 10 . Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and serves as an anchor to recruit a variety of downstream signaling and repair factors to the sites of DNA breaks 2 , 11 . To understand the molecular mechanism of DNA break recognition by PARP enzymes in the context of chromatin, we determined cryo-EM structure of PARP2/HPF1 bound to a nucleosome. The structure shows that PARP2/HPF1 bridges two nucleosomes, with the broken DNA aligned in a ligation-competent position, revealing the initial step in double-strand DNA break repair. The bridging induces structural changes in PARP2 that signal DNA break recognition to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD + and substrate, which may enable PARP enzymes to be processive while bound to chromatin. The mechanisms of PARP activation and catalytic cycle we describe can explain resistance mechanisms to PARP inhibitors, and will aid development of better inhibitors for cancer treatments 12 – 16 .
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the ''degradation by default'' model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.