Limitation of CO2 emission is one of the main goals and regulations introduced by the international institutions’ rules. In the case of ships using oil-related and gas fuels this problem is dealt with by the International Maritime Organization (IMO) introducing the methodology of Energy Efficiency Operational Indicator (EEOI) determining for ships being under exploitation. The methodology allows for determining EEOI for seven types of ships, for which the value of this index depends on the amount of transported cargo or number of passengers, type of and amount of fuel used, as well as distance travelled by the ship. Such a methodology cannot be used for the specialized ships, whose exploitation tasks are different to the ships of the trade fleet that transport the cargo or the passengers. The methodology allows for determining EEOI for seven types of ships and it does not include specialized ships. The article presents a new methodology of determining EEOI for specialized ships that takes the characteristics of their exploitation into consideration. The way of its use has been presented taking into account the results of exploitation studies carried out on the chosen research and training ship. Obtained results and their analysis allowed for energy efficiency assessment of research and training ships depending on exploitation tasks, voyage time, type of fuel used, distance travelled and ship’s speed. EEOI index value determines energy efficiency of the vessel power system that is directly connected to the amount of the liquid or gas fuel used and the amount of emitted CO2. The aim should be to minimalize the value of EEOI index through planning of the exploitation tasks realization order and adjusting the speed of the ship as well as realization time of particular exploitation tasks, in the case of specialized ships. The analysis results can also be used when managing energy efficiency of these types of ships.
Friction stir welding was applied to join dissimilar aluminum alloys: wrought 2017A and cast AlSi9Mg. The produced weldment was free from cracks and any discontinuities. The weld microstructure was composed of alternating bands of the welded alloys; however, the alloy that was placed on the advancing side (AlSi9Mg) dominated the weld center. The grain size within the particular bands was similar in both alloys. The hardness profile reflected the microstructure formed during welding. The weld microstructure as well as the shape of hardness profile across the weld were justified by numerical simulation of material flow during welding.
This article presents research results on mechanically generated oil mists. The research was carried out for oil mixtures for the Agip/Eni Cladium 120 SAE 40 API CF oil for industrial and marine engines diluted with diesel oil Orlen Efecta Diesel Bio at diesel oil concentrations of 2%, 5%, 10%, 20%, and 50% m/m. Pure lubricating oil and pure diesel oil were also tested. Droplet size distributions were determined for the reference moment at which residual discrepancies R between the measurement data and the sprayed pure diesel oil calculation model obtained the lowest value. For mechanically generated oil mists, the light transmission coefficient through the oil mist T, the specific surface area of the oil mist SSA, and the volumetric share of drops DV(V%) for 10%, 50%, and 90% of the total volume of the generated oil mist were determined. The span of the volumetric distributions of droplet sizes SPAN, Sauter mean diameter D[3,2], De Brouckere mean diameter D[4,3], the volumetric and mass percentage of droplets with diameters ≤5 μm (diameters necessary for a crankcase explosion), the minimum difference between the measurement results, and the calculation model used by the residual error measuring device were determined. The best fit in each measurement cycle (the smallest R value was analyzed. For specific indicators, correlations with diesel oil levels in the mixture were determined using the Pearson rXY linear correlation coefficient. Those results confirmed an increase in smaller-diameter droplets, an increase in the number of droplets with diameters up to 5 μm, and an increase in the span of the oil mist droplet diameter distribution with additional diesel oil. This confirmed a relationship between an increased lubricating oil dilution and an increased explosion risk in the crankcase.
The search for new polymer processing ways has become necessary due to the rapidly growing technology and market needs. The time of manufacturing products, as well as the impact of process parameters and the design itself on the properties of materials have become very important. Therefore, the creation of assumptions allowing the construction of a compact device whose construction will allow, for example, high process efficiency at low screw rotational speeds or a high degree of material homogenisation, is expected by the market. However, this requires the design of new or continuous modifications and improvements to existing structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.