The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to measure the drag force on the passenger car roof. The position of the object relative to the vehicle was checked on the basis of numerical analysis of the airflow around this vehicle. Based on the investigations, the field of velocity and pressure, and air flow formed around the contour of the vehicle which have been chosen, were determined. In addition, the drag force characteristic was determined as a function of velocity and it was compared with the values from the numerical analysis. This research is a form of verifying opportunities for this type of research on vehicles. The conclusions derived from the analysis of the results will be used in the future to carry out further research.
The paper reports on the process of modelling a high-pressure common rail pump designed to supply a two-stroke compression-ignition engine, which includes the presentation of methodology for model construction and results of simulation tests. A one-dimensional model of the pump was developed in the AVL Hydsim environment. A single-section positive displacement pump driven by a double cam was used for modelling. The developed model enables simulation of pump operation in various conditions defined by shaft speed, pumping pressure, settings of pump executive elements as well as fuel properties. The obtained results were compared with the results of bench tests and theoretical calculations. The analysis included the flow rate fuel overflow and changes in pumping pressure depending on the fuel dispenser settings. The model will also be used to build a complete fuel supply system model consisting of an injector model, a rail model and a control system model. The research is carried out with a view to optimising individual components and the operation of the entire supply system, taking into account the regulation of pumping pressure and synchronisation of the pumping process with fuel injection cycles.
The article presents the results of simulations research carried out, using Finite Element Method. The simulations were made in the Abaqus software. Calculations were made on the connecting rod of opposed piston engine. The connecting rod was subjected to a compression tests. Different versions of the boundary conditions in the form of load forces and pressure distribution acting on the small end of the connecting rod were presented. Depending on the load distribution acting on the connecting rod small end, different distributions of stresses in the connecting rod geometry were obtained. All studies were performed for the same geometry, the same mesh grid, and for the same value of compressive force (research could be considered as comparable). Changing the size and distribution of stresses in the connecting rod, evidence the impact of the adopted boundary conditions of the load distribution on the calculation results. It is important for the use of modern simulation tools in the design process of new mechanical parts.
The paper presents an analysis of the constructions of oil pumps for an aircraft compression ignition engine. It is a two-stroke liquid-cooled engine with a power of 100 kW. The system has 3 cylinders and 6 opposed pistons. The paper estimates the required oil pump capacity to make the engine components well-lubricated. Next, automotive oil pumps for diesel engines are analyzed to select a correct pump for aircraft diesel engine applications. Three pump constructions of different constructions and dimensions of a rotor were selected. A measurement bench was designed and built to test these oil pumps in the range of pump shaft speeds from 0 to 4500 rpm and volumetric flow rate up to 150 l/min. The bench also enables stabilization of oil temperature at the required level within the range from 30 to 120oC. In addition, flow resistance through engine slide bearings was simulated by changing the position of a throttling valve at the pump output to regulate pressure in the range of 0–700 kPa. The obtained capacity characteristics of individual pumps versus on oil pressure and temperature allowed us to find an appropriate oil pump to make individual engine nodes well-lubricated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.