Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), which has been originally isolated from rat stomach. Evidence has been previously provided that adrenal gland possesses abundant ghrelin-displaceable GHS-Rs, but nothing is known about the possible role of ghrelin in the regulation of adrenocortical function. Reverse transcription-polymerase chain reaction demonstrated the expression of ghrelin and GHS-R in the rat adrenal cortex, and high adrenal concentrations of immunoreactive ghrelin were detected by radioimmune assay (RIA). Autoradiography localized abundant [ 125 I]ghrelin binding sites in the adrenal zona glomerulosa (ZG) and outer zona fasciculata (ZF). Ghrelin (from 10 310 to 10 38 M) did not a¡ect either basal steroid hormone (pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone, 18-hydroxycorticosterone and aldosterone) secretion from dispersed ZG and zona fasciculata/reticularis (ZF/R) cells (as evaluated by quantitative high pressure liquid chromatography), or basal and agonist-stimulated aldosterone and corticosterone production from cultured ZG and ZF/R cells, respectively (as measured by RIA). Ghrelin (10 38 and 10 36 M) raised basal, but not agonist-stimulated, proliferation rate of cultured ZG cells (percent of cells able to incorporate 5-bromo-2P P-deoxyuridine), without a¡ecting apoptotic deletion rate (percent of cells able to incorporate biotinylated nucleosides into apoptotic DNA fragments). The tyrosine kinase (TK) inhibitor tyrphostin-23 and the p42/p44 mitogen-activated protein kinase (MAPK) inhibitor PD-98059 abolished the proliferogenic e¡ect of 10 38 M ghrelin, while the protein kinase A and C inhibitors H-89 and calphostin-C were ine¡ective. Ghrelin (10 38 M) stimulated TK and MAPK activity of dispersed ZG cells, and the e¡ect was abolished by preincubation with tyrphostin-23 and PD-98059, respectively. Tyrphostin-23 annulled ghrelin-induced activation of MAPK activity. Taken together, the present ¢ndings indicate that (i) ghrelin and GHS-R are both expressed in the rat adrenal cortex, ghrelin binding sites being very abundant in the ZG; (ii) ghrelin does not a¡ect the secretory activity of rat adrenocortical cells, but signi¢cantly enhances the proliferation rate of cultured ZG cells, without a¡ecting apoptotic deletion rate; and (iii) the ZG proliferogenic action of ghrelin involves the TK-dependent activation of the p42/p44 MAPK cascade. ß
Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix® Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower expression levels of genes regulating basal cell functions.
Introduction. Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Material and methods. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix ® Rat Gene 1.1 ST Array Strip and QPCR. Results. By means of Affymetrix ® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERa, ERb and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERa genes were the highest. In studied adrenal samples the relative expression of ERa mRNA was higher than ERb mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRa and ERRb were similar, and only in the ZF/R of female rats ERRg expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5a-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. Conclusions. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERRa and ERRb receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.