This paper presents our contribution to the ASVspoof 2017 Challenge. It addresses a replay spoofing attack against a speaker recognition system by detecting that the analysed signal has passed through multiple analogue-to-digital (AD) conversions. Specifically, we show that most of the cues that enable to detect the replay attacks can be found in the high-frequency band of the replayed recordings. The described anti-spoofing countermeasures are based on (1) modelling the subband spectrum and (2) using the proposed features derived from the linear prediction (LP) analysis. The results of the investigated methods show a significant improvement in comparison to the baseline system of the ASVspoof 2017 Challenge. A relative equal error rate (EER) reduction by 70% was achieved for the development set and a reduction by 30% was obtained for the evaluation set.
Statistics of pauses appearing in Polish as a potential source of biometry information for automatic speaker recognition were described. The usage of three main types of acoustic pauses (silent, filled and breath pauses) and syntactic pauses (punctuation marks in speech transcripts) was investigated quantitatively in three types of spontaneous speech (presentations, simultaneous interpretation and radio interviews) and read speech (audio books). Selected parameters of pauses extracted for each speaker separately or for speaker groups were examined statistically to verify usefulness of information on pauses for speaker recognition and speaker profile estimation. Quantity and duration of filled pauses, audible breaths, and correlation between the temporal structure of speech and the syntax structure of the spoken language were the features which characterize speakers most. The experiment of using pauses in speaker biometry system (using Universal Background Model and i-vectors) resulted in 30 % equal error rate. Including pause-related features to the baseline Mel-frequency cepstral coefficient system has not significantly improved its performance. In the experiment with automatic recognition of three types of spontaneous speech, we achieved 78 % accuracy, using GMM classifier. Silent pause-related features allowed distinguishing between read and spontaneous speech by extreme gradient boosting with 75 % accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.