a b s t r a c tElectronic tongue technology based on arrays of cross-sensitive chemical sensors and chemometric data processing has attracted a lot of researchers' attention through the last years. Several so far reported applications dealing with pharmaceutical related tasks employed different e-tongue systems to address different objectives. In this situation, it is hard to judge on the benefits and drawbacks of particular e-tongue implementations for R&D in pharmaceutics. The objective of this study was to compare the performance of six different e-tongues applied to the same set of pharmaceutical samples. For this purpose, two commercially available systems (from Insent and AlphaMOS) and four laboratory prototype systems (two potentiometric systems from Warsaw operating in flow and static modes, one potentiometric system from St. Petersburg, one voltammetric system from Barcelona) were employed. The sample set addressed in the study comprised nine different formulations based on caffeine citrate, lactose monohydrate, maltodextrine, saccharin sodium and citric acid in various combinations. To provide for the fair and unbiased comparison, samples were evaluated under blind conditions and data processing from all the systems was performed in a uniform way. Different mathematical methods were applied to judge on similarity of the e-tongues response from the samples. These were principal component analysis (PCA), RV matrix correlation coefficients and Tuckerís congruency coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.