Hydroxy-terminated polybutadiene was functionalized with isocyanate groups and employed in preparation of a block copolymer of polybutadiene and bisphenol A diglycidyl ether (DGEBA)-based epoxy resin. The block copolymer was characterized by Fourier transform infrared (FTIR) spectroscopy and size-exclusion chromatography (SEC). Cured blends of epoxy resin and hydroxy-terminated polybutadiene (HTPB) or a corresponding block copolymer were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMTA), and scanning electron microscopy (SEM). All modified epoxy resin networks presented improved impact resistance with the addition of the rubber component at a proportion up to 10 wt % when compared to the neat cured resin. The modification with HTPB resulted in milky cured materials with phase-separated morphology. Epoxy resin blends with the block copolymer resulted in cured transparent and flexible materials with outstanding impact resistance and lower glass transition temperatures. No phase separation was discernible in blends with the block copolymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.