In the last years the possibility of creating new conducting polymers exploring the concept of copolymerization (different structural monomeric units) has attracted much attention from experimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite number of new structures is possible and the procedure of trial and error has been the rule. In this work we have used a methodology able of generating new structures with pre-specified properties. It combines the use of negative factor counting (NFC) technique with artificial intelligence methods (genetic algorithms -GAs). We present the results for a case study for poly(phenylenesulfide phenyleneamine) (PPSA), a copolymer formed by combination of homopolymers: polyaniline (PANI) and polyphenylenesulfide (PPS). The methodology was successfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be in principle adapted to the design of new classes of materials with pre-specified properties.
We have developed a new methodology to design conducting polymers with pre-specified properties using genetic algorithms (GAs). The methodology combines GAs with the Negative Factor Counting (NFC) technique. NFC is a powerful technique to obtain the eigenvalues of large matrices without direct diagonalization.We present the results for a case study of polyanilines, one of the most important families of conducting polymers. The methodology proved to be able of generating automatic solutions for the problem of determining the optimum relative concentration for binary and ternary disordered polyaniline alloys exhibiting metallic properties. The methodology is completely general and can be used to design new classes of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.