Morphologic features obtained from SRTM data, integrated with geologic information, are emphasized in this paper in order to provide the basis for understanding the development of the lowest Amazon drainage basin, focusing on the history of one of the largest Amazonian tributaries, the Tocantins River, and on the origin of the Marajó Island, throughout the Quaternary. This approach led to the recognition of a fan morphology related to the record of a tectonically controlled N/NW-S/SE orientated paleovalley cut down into Miocene and older rocks. The incised valley was fed by a paleo Tocantins River, which deposited its sediment load continuously to the north-northwest, reaching the Marajó Island and producing a deposit displaying a fan-morphology during the PlioPleistocene/Pleistocene. As characterized in the SRTM images, this channel system became abandoned due to capture by NE-SW orientated faults and establishment of the Pará River by W-E strike slip movements. This event, which probably took place in the Mid-Holocene, was responsible for detachment of the Marajó Island from the mainland.INPE ePrint: sid.inpe.br/ePrint@80
Marajó Island is located in a passive continental margin that evolved from rifting associated with the opening of the Equatorial South Atlantic Ocean in the Late Jurassic/Early Cretaceous period. This study, based on remote sensing integrated with sedimentology, as well as subsurface and seismographic data available from the literature, allows discussion of the significance of tectonics during the Quaternary history of marginal basins. Results show that eastern Marajó Island contains channels with evidence of tectonic control. Mapping of straight channels defined four main groups of lineaments (i.e. NNE-SSW, NE-SW, NW-SE and E-W) that parallel main normal and strike-slip fault zones recorded for the Amazon region. Additionally, sedimentological studies of late Quaternary and Holocene deposits indicate numerous ductile and brittle structures within stratigraphic horizons bounded by undeformed strata, related to seismogenic deformation during or shortly after sediment deposition. This conclusion is consistent with subsurface Bouguer mapping suggestive of eastern Marajó Island being still part of the Marajó graben system, where important fault reactivation is recorded up to the Quaternary. Together with the recognition of several phases of fault reactivation, these data suggest that faults developed in association with rift basins might remain active in passive margins, imposing important control on development of depositional systems.
A large area in northeastern Marajó Island, northern Brazil, has been characterized geomorphologically, applying information acquired from Landsat imagery. This study was combined with detailed sedimentologic analysis of continuous cores, which provided a record of depositional settings developed in this area through the Holocene. The results revealed well-preserved, meandering to anastomosed drainage networks of wide palaeochannels that were superimposed by a narrower palaeochannel system. In both cases, the sedimentary record consists of sands, heterolithic deposits and muds, locally rich in plant debris. The strata are organized into fining upward successions that reach approximately 18 m thick in the wide channels and 4 m thick in the narrow channels. Sedimentary features suggestive of a coastal location for the wider palaeochannels and reworking of sediments by tidal currents include the prevalence of well to moderately sorted, rounded to sub-rounded, fine- to medium-grained sands displaying foreset packages separated by mud couplets, suggestive of tidal cycles. The data presented herein point to a rise in relative sea level reaching the Lake Arari area during the early to late/mid Holocene. This event was followed by a relative sea level drop. Tectonics seem to have contributed to an overall lowering in relative sea level in the study area since the mid-Holocene, which does not follow the same pattern recorded in other areas along the northern Brazilian coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.