Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra-and interspecific interactions. Recent experimental work suggests that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and total population density. Under what situations is this simplification appropriate? Why might intraspecific variation alter ecological dynamics? In this review, we synthesize recent theory, identifying six general mechanisms by which trait variation changes the outcome of ecological interactions. These include several direct effects of trait variation per se, and indirect effects arising from genetic variation's role in trait evolution.
Many generalist populations are composed of specialised individuals, whose niches are small subsets of the population niche. This Ôindividual specialisationÕ is a widespread phenomenon in natural populations, but until recently few studies quantified the magnitude of individual specialisation and how this magnitude varies among populations or contexts. Such quantitative approaches are necessary for us to understand how ecological interactions influence the amount of among-individual variation, and how the amount of variation might affect ecological dynamics. Herein, we review recent studies of individual specialisation, emphasising the novel insights arising from quantitative measures of diet variation. Experimental and comparative studies have confirmed long-standing theoretical expectations that the magnitude of among-individual diet variation depends on the level of intra and interspecific competition, ecological opportunity and predation. In contrast, there is little empirical information as to how individual specialisation affects community dynamics. We discuss some emerging methodological issues as guidelines for researchers studying individual specialisation, and make specific recommendations regarding avenues for future research.
19Stable isotope analysis has emerged as one of the primary means for examining the structure and 20 dynamics of food webs, and numerous analytical approaches are now commonly used in the 21 field. Techniques range from simple, qualitative inferences based on the isotopic niche, to 22Bayesian mixing models that can be used to characterize food-web structure at multiple 23 hierarchical levels. We provide a comprehensive review of these techniques, and thus a single 24 reference source to help identify the most useful approaches to apply to a given data set. We
There is extensive evidence that some species of ecological generalists, which use a wide diversity of resources, are in fact heterogeneous collections of relatively specialized individuals. This within-population variation, or ''individual specialization,'' is a key requirement for frequency-dependent interactions that may drive a variety of types of evolutionary diversification and may influence the population dynamics and ecological interactions of species. Consequently, it is important to understand when individual specialization is likely to be strong or weak. The niche variation hypothesis (NVH) suggests that populations tend to become more generalized when they are released from interspecific competition. This niche expansion was proposed to arise via increased variation among individuals rather than increased individual niche breadth. Consequently, we expect ecological generalists to exhibit stronger individual specialization, but this correlation has been repeatedly rejected by empiricists. The drawback with previous empirical tests of the NVH is that they use morphological variation as a proxy for niche variation, ignoring the role of behavior and complex phenotype-function relationships. Here, we used diet data to directly estimate niche variation among individuals. Consistent with the NVH, we show that more generalized populations also exhibit more niche variation. This trend is quite general, appearing in all five case studies examined: three-spine stickleback, Eurasian perch, Anolis lizards, intertidal gastropods, and a community of neotropical frogs. Our results suggest that generalist populations may tend to be more ecologically variable. Whether this translates into greater genetic variation, evolvability, or ecological stability remains to be determined. frequency dependence ͉ individual specialization ͉ niche expansion
Optimal foraging theory predicts that individuals should become more opportunistic when intraspecific competition is high and preferred resources are scarce. This density-dependent diet shift should result in increased diet breadth for individuals as they add previously unused prey to their repertoire. As a result, the niche breadth of the population as a whole should increase. In a recent study, R. Svanbäck and D. I. Bolnick confirmed that intraspecific competition led to increased population diet breadth in threespine stickleback (Gasterosteus aculeatus). However, individual diet breadth did not expand as resource levels declined. Here, we present a new method based on complex network theory that moves beyond a simple measure of diet breadth, and we use the method to reexamine the stickleback experiment. This method reveals that the population as a whole added new types of prey as stickleback density was increased. However, whereas foraging theory predicts that niche expansion is achieved by individuals accepting new prey in addition to previously preferred prey, we found that a subset of individuals ceased to use their previously preferred prey, even though other members of their population continued to specialize on the original prey types. As a result, populations were subdivided into groups of ecologically similar individuals, with diet variation among groups reflecting phenotype-dependent changes in foraging behavior as prey density declined. These results are consistent with foraging theory if we assume that quantitative trait variation among consumers affects prey preferences, and if cognitive constraints prevent individuals from continuing to use their formerly preferred prey while adding new prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.