This work has as main objective to propose the identification of a small scale non-linear system through the Neural Network AutoRegressive with eXternal input. The use of this network requires an adequate methodology for its configuration and, consequently, a good training set. Then, it is proposed that the main definitions of the network parameters be obtained through the analysis of nonintrusive performance indices. Additionally, using a database based on the system’s response, excited by the Pseudo-Random Binary Sequence signal. The methodology will be applied in two specific open-loop identification situations: numerical simulation of a fourth order polynomial system (Case 01), and an experimental system that controls a nonlinear water tank level (Case 02). The results of the identified models were able to represent the system dynamics with high fidelity, presenting an average identification error of less than 0:14 and 0:34% for Case 1 and 2, respectively. Also, it is observed that the learning and generalization evidence could represent the process intrinsic nonlinearities satisfactorily. Besides, it will be possible to find the potentiality and usefulness of the developed network in nonlinear system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.