In recent years, the growth of information technology has required higher reliability, accessibility, collaboration, availability, and a reduction of costs on data centers due to factors such as social network, cloud computing, and e-commerce. These systems require redundant mechanisms on the data center infrastrucutre to achieve high availability, which may increase the electric energy consumption, impacting in both the sustainability and cost. This work proposes a multi-objective optimization approach, based on Genetic Algorithms, to optimize cost, sustainability and availability of data center power infrastructures. The main goal is to maximize availability and minimize cost and exergy consumed (adopted to estimate the environmental impacts). In order to compute such metrics, this work adopts the energy flow model (EFM), reliability block diagrams (RBD) and stochastic petri nets (SPN). Two case studies are conducted to show the applicability of the proposed strategy: (i) takes into account 5 typical data center architectures that were optimized to conduct the validation process of the proposed strategy; (ii) uses the optimization strategy in two architectures classified by ANSI / TIA-942 (TIER I and II). In both case studies, significant improvements were achieved in the results, which were very close to the optimum one that was obtained by a brute force algorithm that analyzes all the possibilities and returns the optimal solution. It is worth mentioning that the time used to obtain the results using the genetic algorithm approach was significantly lower (6,763,260 times), in comparison with the strategy which combines all the possible combinations to obtain the optimal result. Resumo: Nos últimos anos, o crescimento da tecnologia da informação exigiu maior confiabilidade, acessibilidade, colaboração, disponibilidade e redução de custos nos data centers devido a fatores como redes sociais, computação em nuvem e comércio eletrônico. Esses sistemas exigem mecanismos redundantes na infraestrutura do data center para alcançar uma alta disponibilidade, o que pode aumentar o consumo de energia elétrica, impactando tanto na sustentabilidade quanto no custo. Este trabalho propõe uma abordagem de otimização multi-objetivo, baseada em Algoritmos Genéticos, para otimizar custos, sustentabilidade e disponibilidade de infraestruturas de energia em data centers. O principal objetivo é maximizar a disponibilidade e minimizar o custo e a exergia consumida (adotada para estimar os impactos ambientais). Para computar tais métricas, este trabalho adota o modelo de fluxo de energia (EFM), diagramas de blocos de confiabilidade (RBD) e redes de petri estocásticas (SPN). Dois estudos de caso são conduzidos: (i) leva em consideração 5 arquiteturas típicas de data centers para mostrar a aplicabilidade e validação da estratégia proposta; (ii) utiliza a estratégia de otimização em duas arquiteturas classificadas pela norma ANSI/TIA-942 (TIER I e II). Em ambos estudos de caso, observou-se uma melhora significativa nos resultados que fic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.