Technological advancement is currently focused on the miniaturization of devices, and integrated circuits allow us to observe the increase in the number of Internet of Things (IoT) devices. Most IoT services and devices require an Internet connection, which needs to provide the minimum processing, storage and networking requirements to best serve a requested service. One of the main goals of 5G networks is to comply with the user’s various Quality of Service (QoS) requirements in different application scenarios. Fifth-generation networks use Network Function Virtualization (NFV) and Mobile Edge Computing (MEC) concepts to achieve these QoS requirements. However, the computational resource allocation mechanisms required by the services are considered very complex. Thus, in this paper, we propose an allocation and management resources mechanism for 5G networks that uses MEC and simple mathematical methods to reduce the model complexity. The mechanism decides to allocate the resource in MEC to meet the requirements requested by the user. The simulation results show that the proposed mechanism provides a larger amount of services, leading to a reduction in the service lock number and as a reduction in the blocking ratio of services due to the accuracy of the approach and its load balancing in the process of resource allocation.
The disorderly growth of urban centers can lead to serious socioeconomic disadvantages, such as health problems, due to long-term exposure to toxic gases and also monetary losses due to time stopped in congestion. Thus, there is a need for systems that help in the management and control of the flow of vehicles on the roads, seeking to reduce the damage resulting from a faulty transportation system and also avoiding the use of an inefficient system of information dissemination of urban roads. In this scenario, innovative systems are being developed to analyze the conjunction of road conditions to supervise and provide routes as needed for drivers to provide greater comfort and safety to vehicle traffic on urban roads. Thus, in this work, we propose the development of a system to monitor vehicle traffic, informing about events that are taking place on the roads in real time. The system can recommend new routes to drivers or allow drivers to take action based on information received from a particular road. As well as, the system uses driver location information for traffic monitoring, which will later be available for any devices, either a mobile device (smartphone) or a desktop. For the evaluation of the proposed system, a user case was developed for the Catanduva city in which we performed a test with the proposed system and was possible to verify a reduction in vehicle stopping time by 42% and a shorter travel time of 50% with an average speed of 33 km/h.
The Intelligent Transport Systems (ITS) has the objective quality of transportation improvement through transportation system monitoring and management and makes the trip more comfortable and safer for drivers and passengers. The mobile clouds can assist the ITS in handling the resource management problem. However, resource allocation management in an ITS is challenging due to vehicular network characteristics, such as high mobility and dynamic topology. With that in mind, we propose the FORESAM, a mechanism for resources management and allocation based on a set of FOGs which control vehicular cloud resources in the urban environment. The mechanism is based on a more accurate mathematical model (Multiple Attribute Decision), which aims to assist the allocation decision of resources set that meets the period requested service. The simulation results have shown that the proposed solution allows a higher number of services, reducing the number of locks of services with its accuracy. Furthermore, its resource allocation is more balanced the provided a smaller amount of discarded services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.