Growth hormone (GH)-releasing hormone (GHRH) is the most important stimulus for GH secretion by the pituitary gland. Subjects homozygous for GHRH receptor (GHRHR) gene (GHRHR) inactivating mutations have severe GH deficiency, resulting in severe short stature if not treated. We previously reported that young adults heterozygous for the c.57+1G>A null GHRHR mutation (MUT/N) have reduced weight and body mass index (BMI) but normal stature. Here we have studied whether older MUT/N have an additional phenotype. In a cross-sectional study, we measured height, weight and blood pressure, and calculated BMI in two groups (young, 20-40 years of age) and old (60-80 years) of individuals heterozygous for the same GHRHR mutation, and compared with a large number of individuals of normal genotype residing in the same geographical area. Standard deviation score (SDS) of weight was lower, and BMI had a trend toward reduction in young heterozygous compared with young normals, without significant difference in stature. Conversely, SDS of height was lower in older heterozygous individuals than in controls, corresponding to a reduction of 4.2 cm. These data show a reduced stature in older subjects heterozygous for the c.57+1G>A GHRHR mutation, indicating different effects of heterozygosis through lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.