Osteoarthritis (OA) is generally a disease of the elderly population, but can occur in young patients in exceptional cases. This study compares the cellular and epigenetic features of primary old-age OA with those of secondary OA in a 23-year-old patient with developmental dysplasia of the hip. In addition, control cartilage from a 14-year-old was compared with that from patients with a fracture of the neck of femur (#NOF) to establish to what extent the latter is a useful control for OA. Articular cartilage was obtained from discarded femoral heads after hip arthroplasty. MMP-3, MMP-9, MMP-13, and ADAMTS-4 were immunolocalized and the methylation status of specific promoter CpG sites was determined. Both primary and secondary OA were characterized by loss of aggrecan, formation of clones, and abnormal expression of the proteases that correlated with epigenetic DNA demethylation. The latter indicated that the abnormal expression of the cartilage-degrading proteases was not due to a short-term up-regulation, but a heritable, permanent alteration in gene expression. Comparing cell densities in young and old control cartilage estimated an age-related cell loss of $1% per year. In aged #NOF cartilage, some superficial-zone chondrocytes expressed the proteases, but the majority of cells were immunonegative and their promoters were hypermethylated. The cellular and epigenetic features of the intermediate and deep zones of #NOF cartilage are thus similar to those of young healthy cartilage, justifying the use of #NOF cartilage as control cartilage for OA, providing the superficial zone is removed. ß
An efficient synthesis
of 17-α-estradiol 1 is
described. Utilization of in situ IR allowed for an online monitoring
of the key Mitsunobu reaction and development of a safe and reliable
synthesis of 17-α-estradiol 1 in 78% overall yield
over three steps. Benzoylation of 17-β-estradiol 2 is conducted at high regioselectivity under phase-transfer catalysis
(PTC) conditions, followed by a Mitsunobu reaction to invert the chiral
center at C-17 and provide intermediate 5, containing
the core structure of 17-α-estradiol 1. Finally,
the desired active pharmaceutical ingredient (API) is prepared by
saponification of the remaining esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.