We provide a rule to calculate the subdifferential set of the pointwise supremum of an arbitrary family of convex functions defined on a real locally convex topological vector space. Our formula is given exclusively in terms of the data functions and does not require any assumption either on the index set on which the supremum is taken or on the involved functions. Some other calculus rules, namely chain rule formulas of standard type, are obtained from our main result via new and direct proofs.
Abstract. This paper provides KKT and saddle point optimality conditions, duality theorems and stability theorems for consistent convex optimization problems posed in locally convex topological vector spaces. The feasible sets of these optimization problems are formed by those elements of a given closed convex set which satisfy a (possibly infinite) convex system. Moreover, all the involved functions are assumed to be convex, lower semicontinuous and proper (but not necessarily real-valued). The key result in the paper is the characterization of those reverse-convex inequalities which are consequence of the constraints system. As a byproduct of this new versions of Farkas' lemma we also characterize the containment of convex sets in reverse-convex sets. The main results in the paper are obtained under a suitable Farkas-type constraint qualifications and/or a certain closedness assumption.Mathematics Subject Classification. 90C25, 90C34, 90C46, 90C48.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.