We present a novel algorithm based on combinatorial operations on lists for computing the number of models on two conjunctive normal form Boolean formulas whose restricted graph is represented by a grid graph Gm,n. We show that our algorithm is correct and its time complexity is O ( t · 1 . 618 t + 2 + t · 1 . 618 2 t + 4 ) , where t = n · m is the total number of vertices in the graph. For this class of formulas, we show that our proposal improves the asymptotic behavior of the time-complexity with respect of the current leader algorithm for counting models on two conjunctive form formulas of this kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.