Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l−1), malate (2 g l−1) and ethanol (10 ml l−1) (GM + EtOH); glutamate (7·15 g l−1) and ethanol (10 ml l−1); or malate (8·16 g l−1), glucose (10·6 g l−1) and NH4Cl (1·8 g l−1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]−1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)−1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.
The free-living protist Euglena gracilis showed an enhanced growth when cultured in the dark with high concentrations of ethanol as carbon source. In a medium containing glutamate/malate plus 1% ethanol, E. gracilis reached a density of 3 x 10(7) cells/ml after 100 h of culture, which was 5 times higher than that attained with glutamate/malate or ethanol separately. This observation suggested the involvement of a highly active aldehyde dehydrogenase in the metabolism of ethanol. Purification of the E. gracilis aldehyde dehydrogenase from the mitochondrial fraction by affinity chromatography yielded an enrichment of 34 times and recovery of 33% of the total mitochondrial activity. SDS-PAGE and molecular exclusion chromatography revealed a native tetrameric protein of 160 kDa. Kinetic analysis showed Km values of 5 and 50 microM for propionaldehyde and NAD(+), respectively, and a Vm value of 1,300 nmol (min x mg protein)(-1). NAD(+) and NADH stimulated the esterase activity of the purified aldehyde dehydrogenase. The present data indicated that the E. gracilis aldehyde dehydrogenase has kinetic and structural properties similar to those of human aldehyde dehydrogenases class 1 and 2.
The biochemical mechanisms of resistance to several heavy metals, which are associated with their accumulation (binding by high-affinity chelating molecules such as thiol-compounds together with their compartmentalization into organelles), are analyzed for the photosynthetic, free-living protist Euglena gracilis. The complete understanding of these mechanisms may facilitate the rational design of strategies for bioremediation of heavy metal polluted water and soil systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.