Double Whammy Psychopathologies that cannot be explained by simple genetic or environmental circumstances may sometimes result from complex interplay between multiple inputs. Giovanoli et al. (p. 1095 ) analyzed the interactions between prenatal and postnatal stressors in mice to see what synergies give rise to psychopathologies in the adult mice. The results suggest that susceptibilities arise when mice are exposed to prenatal infection and also exposed to stressors around puberty. Stressors delivered later in adolescence did not seem to produce the same susceptibility. Although the mechanisms that impose the delay between stressors and psychopathology remain obscure, the timing and sequence of the triggers hint at possible cellular causes.
It is well accepted that events that interfere with the normal program of neuronal differentiation and brain maturation may be relevant for the etiology of psychiatric disorders, setting the stage for synaptic disorganization that becomes functional later in life. In order to investigate molecular determinants for these events, we examined the modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) and the glutamate NMDA receptor following 24 h maternal separation (MD) on postnatal day 9. We found that in adulthood the expression of BDNF as well as of NR-2A and NR-2B, two NMDA receptor forming subunits, were significantly reduced in the hippocampus of MD rats whereas, among other structures, a slight reduction of NR-2A and 2B was detected only in prefrontal cortex. These changes were not observed acutely, nor in pre-weaning animals. Furthermore we found that in MD rats the modulation of hippocampal BDNF in response to an acute stress was altered, indicating a persistent functional impairment in its regulation, which may subserve a specific role for coping with challenging situations. We propose that adverse events taking place during brain maturation can modulate the expression of molecular players of cellular plasticity within selected brain regions, thus contributing to permanent alterations in brain function, which might ultimately lead to an increased vulnerability for psychiatric diseases.
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. We, therefore, investigated the molecular signaling pathways mediating the effects of cortisol on proliferation, neuronal differentiation, and astrogliogenesis, in an immortalized human hippocampal progenitor cell line. In addition, we examined the molecular signaling pathways activated in the hippocampus of prenatally stressed rats, characterized by persistently elevated glucocorticoid levels in adulthood. In human hippocampal progenitor cells, we found that low concentrations of cortisol (100 nM) increased proliferation (+16%), decreased neurogenesis into microtubule-associated protein 2 (MAP2)-positive neurons (−24%) and doublecortin (Dcx)-positive neuroblasts (−21%), and increased differentiation into S100β-positive astrocytes (+23%). These effects were dependent on the mineralocorticoid receptor (MR) as they were abolished by the MR antagonist, spironolactone, and mimicked by the MR-agonist, aldosterone. In contrast, high concentrations of cortisol (100 μM) decreased proliferation (−17%) and neuronal differentiation into MAP2-positive neurons (−22%) and into Dcx-positive neuroblasts (−27%), without regulating astrogliogenesis. These effects were dependent on the glucocorticoid receptor (GR), blocked by the GR antagonist RU486, and mimicked by the GR-agonist, dexamethasone. Gene expression microarray and pathway analysis showed that the low concentration of cortisol enhances Notch/Hes-signaling, the high concentration inhibits TGFβ-SMAD2/3-signaling, and both concentrations inhibit Hedgehog signaling. Mechanistically, we show that reduced Hedgehog signaling indeed critically contributes to the cortisol-induced reduction in neuronal differentiation. Accordingly, TGFβ-SMAD2/3 and Hedgehog signaling were also inhibited in the hippocampus of adult prenatally stressed rats with high glucocorticoid levels. In conclusion, our data demonstrate novel molecular signaling pathways that are regulated by glucocorticoids in vitro, in human hippocampal progenitor cells, and by stress in vivo, in the rat hippocampus.
Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli. In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor (BDNF), which represents one of the major mediators of neuroplasticity.
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms mediating these effects are poorly understood. Here we identify the glucocorticoid receptor (GR) target gene, serum-and glucocorticoid-inducible kinase 1 (SGK1), as one such mechanism. Using a human hippocampal progenitor cell line, we found that a small molecule inhibitor for SGK1, GSK650394, counteracted the cortisol-induced reduction in neurogenesis. Moreover, gene expression and pathway analysis showed that inhibition of the neurogenic Hedgehog pathway by cortisol was SGK1-dependent. SGK1 also potentiated and maintained GR activation in the presence of cortisol, and even after cortisol withdrawal, by increasing GR phosphorylation and GR nuclear translocation. Experiments combining the inhibitor for SGK1, GSK650394, with the GR antagonist, RU486, demonstrated that SGK1 was involved in the cortisol-induced reduction in progenitor proliferation both downstream of GR, by regulating relevant target genes, and upstream of GR, by increasing GR function. Corroborating the relevance of these findings in clinical and rodent settings, we also observed a significant increase of SGK1 mRNA in peripheral blood of drug-free depressed patients, as well as in the hippocampus of rats subjected to either unpredictable chronic mild stress or prenatal stress. Our findings identify SGK1 as a mediator for the effects of cortisol on neurogenesis and GR function, with particular relevance to stress and depression.antidepressants | hypothalamus-pituitary-adrenal axis | stem cells | neuroplasticity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.