Campylobacter spp infection affects more than 200,000 people every year in Europe and in the last four years a trend shows an increase in campylobacteriosis. The main vehicle for transmission of the bacterium is contaminated food like meat, milk, fruit and vegetables. In this study, the aim was to find characteristic volatile organic compounds (VOCs) of C. jejuni in order to detect its presence with an array of metal oxide (MOX) gas sensors. Using a starting concentration of 103 CFU/mL, VOCs were analyzed using Gas-Chromatography Mass-Spectrometry (GC-MS) with a Solid-Phase Micro Extraction (SPME) technique at the initial time (T0) and after 20 h (T20). It has been found that a Campylobacter sample at T20 is characterized by a higher number of alcohol compounds that the one at T0 and this is due to sugar fermentation. Sensor results showed the ability of the system to follow bacteria curve growth from T0 to T20 using Principal Component Analysis (PCA). In particular, this results in a decrease of ΔR/R0 value over time. For this reason, MOX sensors are a promising technology for the development of a rapid and sensitive system for C. jejuni.
Parmigiano Reggiano cheese is one of the most appreciated and consumed foods worldwide, especially in Italy, for its high content of nutrients and taste. However, these characteristics make this product subject to counterfeiting in different forms. In this study, a novel method based on an electronic nose has been developed to investigate the potentiality of this tool to distinguish rind percentages in grated Parmigiano Reggiano packages that should be lower than 18%. Different samples, in terms of percentage, seasoning and rind working process, were considered to tackle the problem at 360°. In parallel, GC-MS technique was used to give a name to the compounds that characterize Parmigiano and to relate them to sensors responses. Data analysis consisted of two stages: Multivariate analysis (PLS) and classification made in a hierarchical way with PLS-DA ad ANNs. Results were promising, in terms of correct classification of the samples. The correct classification rate (%) was higher for ANNs than PLS-DA, with correct identification approaching 100 percent.
Extra virgin olive oil (EVOO) is characterized by its aroma and other sensory attributes. These are determined by the geographical origin of the oil, extraction process, place of cultivation, soil, tree varieties, and storage conditions. In the present work, an array of metal oxide gas sensors (called S3), in combination with the SPME-GC-MS technique, was applied to the discrimination of different types of olive oil (phase 1) and to the identification of four varieties of Garda PDO extra virgin olive oils coming from west and east shores of Lake Garda (phase 2). The chemical analysis method involving SPME-GC-MS provided a complete volatile component of the extra virgin olive oils that was used to relate to the S3 multisensory responses. Furthermore, principal component analysis (PCA) and k-Nearest Neighbors (k-NN) analysis were carried out on the set of data acquired from the sensor array to determine the best sensors for these tasks and to assess the capability of the system to identify various olive oil samples. k-NN classification rates were found to be 94.3% and 94.7% in the two phases, respectively. These first results are encouraging and show a good capability of the S3 instrument to distinguish different oil samples.
Tea is the second most consumed beverage, and its aroma, determined by volatile compounds (VOCs) present in leaves or developed during the processing stages, has a great influence on the final quality. The goal of this study is to determine the volatilome of different types of tea to provide a competitive tool in terms of time and costs to recognize and enhance the quality of the product in the food chain. Analyzed samples are representative of the three major types of tea: black, green, and white. VOCs were studied in parallel with different technologies and methods: gas chromatography coupled with mass spectrometer and solid phase microextraction (SPME-GC-MS) and a device called small sensor system, (S3). S3 is made up of tailor-made metal oxide gas sensors, whose operating principle is based on the variation of sensor resistance based on volatiloma exposure. The data obtained were processed through multivariate statistics, showing the full file of the pre-established aim. From the results obtained, it is understood how supportive an innovative technology can be, remotely controllable supported by machine learning (IoF), aimed in the future at increasing food safety along the entire production chain, as an early warning system for possible microbiological or chemical contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.