Engineered amorphous silica nanoparticles (SiO(2)-NPs) are widely used in dyes, varnishes, plastics and glue, as well as in pharmaceuticals, cosmetics and food. Novel composite SiO(2)-NPs are promising multifunctional devices and combine labels for subsequent tracking and are functionalized e.g. to specifically target cells to deliver their cargo. However, biological and potential toxic effects of SiO(2)-NPs are insufficiently understood. The aim of this study was to determine the uptake and fate of SiO(2)-NPs in mammalian cells. Also, silica submicron particles (SiO(2)-SMPs) were included in the studies in order to identify effects, which are only observed for nano-sized SiO(2) particles. Fluorescently labelled SiO(2)-NPs (nominal size 70 nm) and SiO(2)-SMPs (nominal size 200 and 500 nm) were used to examine cytotoxicity, cellular uptake and localization in human cervical carcinoma cells (HeLa). Particle uptake and intracellular localization in mitochondria, endosomes, lysosomes and nuclei were studied by wide field and confocal laser scanning fluorescence microscopy. Physicochemical characterization of SiO(2)-NPs by transmission electron microscopy and dynamic light scattering revealed a spherical morphology and a monodisperse size distribution. In the presence of serum, all SiO(2) particles are non-toxic. However, in the absence of serum SiO(2)-NPs but not SiO(2)-SMPs are highly toxic. SiO(2) particles, irrespective of size, were detected in the cytosol and accumulated in endosomal compartments of HeLa cells. No accumulation of SiO(2) particles in nuclei or mitochondria of HeLa cells could be observed. In contrast to SiO(2)-SMPs, SiO(2)-NPs are preferentially localized in lysosomes.
Summary Background: Investigations on adverse biological effects of nanoparticles (NPs) in the lung by in vitro studies are usually performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those observed at physiological settings at the air–liquid interface. Results: In order to avoid problems because of an altered behaviour of the nanoparticles in cell culture medium and to mimic a more realistic situation relevant for inhalation, human A549 lung epithelial cells were exposed to aerosols at the air–liquid interphase (ALI) by using the ALI deposition apparatus (ALIDA). The application of an electrostatic field allowed for particle deposition efficiencies that were higher by a factor of more than 20 compared to the unmodified VITROCELL deposition system. We studied two different amorphous silica nanoparticles (particles produced by flame synthesis and particles produced in suspension by the Stöber method). Aerosols with well-defined particle sizes and concentrations were generated by using a commercial electrospray generator or an atomizer. Only the electrospray method allowed for the generation of an aerosol containing monodisperse NPs. However, the deposited mass and surface dose of the particles was too low to induce cellular responses. Therefore, we generated the aerosol with an atomizer which supplied agglomerates and thus allowed a particle deposition with a three orders of magnitude higher mass and of surface doses on lung cells that induced significant biological effects. The deposited dose was estimated and independently validated by measurements using either transmission electron microscopy or, in case of labelled NPs, by fluorescence analyses. Surprisingly, cells exposed at the ALI were less sensitive to silica NPs as evidenced by reduced cytotoxicity and inflammatory responses. Conclusion: Amorphous silica NPs induced qualitatively similar cellular responses under submerged conditions and at the ALI. However, submerged exposure to NPs triggers stronger effects at much lower cellular doses. Hence, more studies are warranted to decipher whether cells at the ALI are in general less vulnerable to NPs or specific NPs show different activities dependent on the exposure method.
Here, amorphous silica nanoparticles (NPs), one of the most abundant nanomaterials, are used as an example to illustrate the utmost importance of surface coverage by functional groups which critically determines biocompatibility. Silica NPs are functionalized with increasing amounts of amino groups, and the number of surface exposed groups is quantified and characterized by detailed NMR and fluorescamine binding studies. Subsequent biocompatibility studies in the absence of serum demonstrate that, irrespective of surface modification, both plain and amine‐modified silica NPs trigger cell death in RAW 264.7 macrophages. The in vitro results can be confirmed in vivo and are predictive for the inflammatory potential in murine lungs. In the presence of serum proteins, on the other hand, a replacement of only 10% of surface‐active silanol groups by amines is sufficient to suppress cytotoxicity, emphasizing the relevance of exposure conditions. Mechanistic investigations identify a key role of lysosomal injury for cytotoxicity only in the presence, but not in the absence, of serum proteins. In conclusion, this work shows the critical need to rigorously characterize the surface coverage of NPs by their constituent functional groups, as well as the impact of serum, to reliably establish quantitative nanostructure activity relationships and develop safe nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.