During pandemic events, strategies such as social distancing can be fundamental to reduce simultaneous infections and mitigate the disease spreading, which is very relevant to the risk of a healthcare system collapse. Although these strategies can be recommended, or even imposed, their actual implementation may depend on the population perception of the risks associated with a potential infection. The current COVID-19 crisis, for instance, is showing that some individuals are much more prone than others to remain isolated. To better understand these dynamics, we propose an epidemiological SIR model that uses evolutionary game theory for combining in a single process social strategies, individual risk perception, and viral spreading. In particular, we consider a disease spreading through a population, whose agents can choose between self-isolation and a lifestyle careless of any epidemic risk. The strategy adoption is individual and depends on the perceived disease risk compared to the quarantine cost. The game payoff governs the strategy adoption, while the epidemic process governs the agent’s health state. At the same time, the infection rate depends on the agent’s strategy while the perceived disease risk depends on the fraction of infected agents. Our results show recurrent infection waves, which are usually seen in previous historic epidemic scenarios with voluntary quarantine. In particular, such waves re-occur as the population reduces disease awareness. Notably, the risk perception is found to be fundamental for controlling the magnitude of the infection peak, while the final infection size is mainly dictated by the infection rates. Low awareness leads to a single and strong infection peak, while a greater disease risk leads to shorter, although more frequent, peaks. The proposed model spontaneously captures relevant aspects of a pandemic event, highlighting the fundamental role of social strategies.
Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.