This paper proposes a multi-modal cross learning approach to augment the neural network training phase by additional sensor data. The approach is multi-modal during training (i.e., radar Range-Doppler maps, thermal camera images, and RGB camera images are used for training). In inference, the approach is single-modal (i.e., only radar Range-Doppler maps are needed for classification). The proposed approach uses a multi-modal autoencoder training which creates a compressed data representation containing correlated features across modalities. The encoder part is then used as a pretrained network for the classification task. The benefits are that expensive sensors like high resolution thermal cameras are not needed in the application but a higher classification accuracy is achieved because of the multi-modal cross learning during training. The autoencoders can also be used to generate hallucinated data of the absent sensors. The hallucinated data can be used for user interfaces, a further classification, or other tasks. The proposed approach is verified within a simultaneous cooking process classification, 2x2 cooktop occupancy detection, and gesture recognition task. The main functionality is an overboil protection and gesture control of a 2x2 cooktop. The multi-modal cross learning approach considerably outperforms single-modal approaches on that challenging classification task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.