Background:Current evidence indicates that a stem cell-like sub-population within malignant glioblastomas, that overexpress members of the adenosine triphosphate-binding cassette (ABC) family transporters, is responsible for multidrug resistance and tumour relapse. Eradication of the brain tumour stem cell (BTSC) compartment is therefore essential to achieve a stable and long-lasting remission.Methods:Melatonin actions were analysed by viability cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein expression and quantitative and qualitative promoter methylation methods.Results:Combinations of melatonin and chemotherapeutic drugs (including temozolomide, current treatment for malignant gliomas) have a synergistic toxic effect on BTSCs and A172 malignant glioma cells. This effect is correlated with a downregulation of the expression and function of the ABC transporter ABCG2/BCRP. Melatonin increased the methylation levels of the ABCG2/BCRP promoter and the effects on ABCG2/BCRP expression and function were prevented by preincubation with a DNA methyltransferase inhibitor.Conclusion:Our results point out a possible relationship between the downregulation of ABCG2/BCRP function and the synergistic toxic effect of melatonin and chemotherapeutic drugs. Melatonin could be a promising candidate to overcome multidrug resistance in the treatment of glioblastomas, and thus improve the efficiency of current therapies.
Our results supports the efficacy of DBS in very refractory CCH with a slightly modified hypothalamic target conceived to avoid the lateral ventricle wall so as to extend the stimulated brain area and to decrease the morbidity of potential haemorrhagic complications.
Glioblastoma-initiating cells (GICs) represent a stem cell-like subpopulation within malignant glioblastomas responsible for tumor development, progression, therapeutic resistance, and tumor relapse. Thus, eradication of this subpopulation is essential to achieve stable, long-lasting remission. We have previously reported that melatonin decreases cell proliferation of glioblastoma cells both in vitro and in vivo and synergistically increases effectiveness of drugs in glioblastoma cells and also in GICs. In this study, we evaluated the effect of the indolamine alone in GICs and found that melatonin treatment reduces GICs proliferation and induces a decrease in self-renewal and clonogenic ability accompanied by a reduction in the expression of stem cell markers. Moreover, our results also indicate that melatonin treatment, by modulating stem cell properties, induces cell death with ultrastructural features of autophagy. Thus, data reported here reinforce the therapeutic potential of melatonin as a treatment of malignant glioblastoma both by inhibiting tumor bulk proliferation or killing GICs, and simultaneously enhancing the effect of chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.