Abstract& Key message Tested on data from Tanzania, both existing species-specific and common biomass models developed elsewhere revealed statistically significant large prediction errors. Species-specific and common above-and belowground biomass models for three mangrove species were therefore developed. The species-specific models fitted better to data than the common models. The former models are recommended for accurate estimation of biomass stored in mangrove forests of Tanzania. & Context Mangroves are essential for climate change mitigation through carbon storage and sequestration. Biomass models are important tools for quantifying biomass and carbon stock. While numerous aboveground biomass models exist, very few studies have focused on belowground biomass, and among these, mangroves of Africa are hardly or not represented. & Aims The aims of the study were to develop above-and belowground biomass models and to evaluate the predictive accuracy of existing aboveground biomass models developed for mangroves in other regions and neighboring countries when applied on data from Tanzania. & Methods Data was collected through destructive sampling of 120 trees (aboveground biomass), among these 30 trees were sampled for belowground biomass. The data originated from four sites along the Tanzanian coastline covering three dominant species: Avicennia marina (Forssk.) Vierh, Sonneratia alba J. Smith, and Rhizophora mucronata Lam. The biomass models were developed through mixed modelling leading to fixed effects/common models and random effects/speciesspecific models. & Results Both the above-and belowground biomass models improved when random effects (species) were considered. Inclusion of total tree height as predictor variable, in addition to diameter at breast height alone, further improved the model predictive accuracy. The tests of existing models from other regions on our data generally showed large and significant prediction errors for aboveground tree biomass.
Handling Editor: Shuqing ZhaoContribution of co-authors: Njana: Took part in design of research, responsible for data collection and preparation, and for data analysis and manuscript development. O. M. Bollandsås: Supervising the work including providing technical guidance on data analysis and commenting on the manuscript. T. Eid: Took part in design of the research, supervising the work, commenting, and manuscript development. E. Zahabu: Supervising the work and commenting on the manuscript. R. Malimbwi: Coordinating the design of research project and commenting on the manuscript.
Background: Developing countries participating in the mitigation mechanism of reducing emissions from deforestation and forest degradation (REDD+), are required to establish a forest reference emission level (FREL), if they wish to seek financial support to reduce carbon emissions from deforestation and forest degradation. However, establishment of FREL relies heavily on the accurate estimates of carbon stock as one of the input variable for computation of the emission factors (EFs). The product of an EF and activity data, such as the area of deforestation, results in the total emissions needed for establishment of FREL. This study presents the carbon stock estimates for different land cover classes based on an analysis of Tanzania's national forest inventory data generated through the National Forest Resources Monitoring and Assessment (NAFORMA). Results: Carbon stocks were estimated in three carbon pools, namely aboveground, belowground, and deadwood for each of the three land cover classes (i.e. Forest, non-forest, and wetland). The weighted average carbon stock was 33.35 t C ha −1 for forest land, 4.28 t ha −1 for wetland and 5.81 t ha −1 for non-forest land. The uncertainty values were 0.9% for forest land, 11.3% for wetland and 1.8% for non-forest land. Average carbon stocks for land cover sub-classes, which make up the above mentioned major land cover classes, are also presented in our study. Conclusions: The values presented in this paper correspond to IPCC tier 3 and can be used for carbon estimation at the national scale for the respective major primary vegetation type for various purposes including REDD+. However, if local based estimates values are needed, the use of auxiliary data to enhance the precision of the area of interest is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.