Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits.
BackgroundGenetics plays an important role in the susceptibility to sporadic colorectal cancer (CRC). In the last 10 years genome-wide association studies (GWAS) have identified over 40 independent low penetrance polymorphic variants. However, these loci only explain around 1‑4% of CRC heritability, highlighting the dire need of identifying novel risk loci. In this study, we focused our attention on the genetic variability of the TAS2R16 gene, encoding for one of the bitter taste receptors that selectively binds to salicin, a natural antipyretic that resembles aspirin. Given the importance of inflammation in CRC, we tested whether polymorphic variants in this gene could affect the risk of developing this neoplasia hypothesizing a role of TAS2R16 in modulating chronic inflammation within the gut.MethodsWe performed an association study using 6 tagging SNPs, (rs860170, rs978739, rs1357949, rs1525489, rs6466849, rs10268496) that cover all TAS2R16 genetic variability. The study was carried out on 1902 CRC cases and 1532 control individuals from four European countries.ResultsWe did not find any statistically significant association between risk of developing CRC and selected SNPs. However, after stratification by histology (colon vs. rectum) we found that rs1525489 was associated with increased risk of rectal cancer with a (Ptrend of = 0.0071).ConclusionsOur data suggest that polymorphisms within TAS2R16 gene do not have a strong influence on colon cancer susceptibility, but a possible role in rectal cancer should be further evaluated in larger cohorts.Electronic supplementary materialThe online version of this article (10.1186/s12876-017-0659-9) contains supplementary material, which is available to authorized users.
Bitter taste receptor TAS2R38 is expressed in the respiratory tract and can respond to quorum-sensing molecules produced by pathogens, stimulating the release of nitric oxide, with biocidal activity. TAS2R38 presents two main high-frequency haplotypes: the “taster” PAV and the “non-taster” AVI. Individuals carrying the AVI allele could be at greater risk of infections, including SARS-CoV-2. The aim of this study was to assess the frequency of PAV and AVI alleles in COVID-19 patients with severe or non-severe symptoms compared to healthy subjects to further corroborate, or not, the hypothesis that the PAV allele may act as a protecting factor towards SARS-CoV-2 infection while the AVI one may represent a risk factor. After careful selection, 54 individuals were included in the study and underwent genetic analysis and PROP phenotype assessment. Our investigation could not point out at a significant relationship between single nucleotide polymorphisms responsible for PROP bitterness and presence/severity of SARS-CoV-2 infection, as previous studies suggested. Our results uncouple the direct genetic contribution of rs10246939, rs1726866 and rs713598 on COVID-19, calling for caution when proposing a treatment based on TAS2R38 phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.