Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Purpose: Bipolar disorder (BD) is a condition associated with structural alterations in the prefrontal cortex (PFC); some genetic variants and mood stabilizer medications like lithium or valproate are associated with these changes. CACNA1C is a gene involved in BD pathology and brain function; carriers of the A allele of rs1006737 are reported to have increased risk for BD and increased cortical thickness (CT) in the PFC compared to noncarriers. Lithium is also associated with increased CT in the PFC of BD subjects compared to the ones on valproate. The influence of these treatments and gene variants over the PFC structure of Mexican subjects has not been explored. Therefore, we evaluate the effects of mood stabilizers and risk A allele of CACNA1C rs1006737 on the prefrontal cortical thickness of Mexican BD patients treated with lithium or valproate. Patients and Methods: A cross-sectional study of 40 BD type I euthymic adult outpatients (20 treated with lithium and 20 with valproate) who underwent a 3T T1-weighted 3D brain scan and genotyping for CACNA1C risk allele rs1006737 was conducted. We performed a cortical thickness analysis of the dorsolateral and orbitofrontal regions of the prefrontal cortex with BrainVoyager 20.6. The effects of treatment and gene variants were analyzed with a two-way multivariate analysis of covariance. Results: There was no association of CACNA1C risk allele rs1006737 with CT measures of both PFCs nor significant interaction between the genetic variant and treatment. Mood stabilizers reported the main effect on the CT measures of the right PFC of our sample. Patients on treatment with lithium showed higher mean CT on the right orbitofrontal cortex. Conclusion: We did not find any association between the prefrontal CT and CACNA1C risk A allele rs1006737 in BD Mexican patients treated with lithium or valproate. Our results suggest that mood stabilizers had the main effect in the CT of the right PFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.