Noninvasive positive-pressure ventilation does not prevent the need for reintubation or reduce mortality in unselected patients who have respiratory failure after extubation.
Patient characteristics and ventilation practices have changed over time, and outcomes of mechanically ventilated patients have improved. Clinical trials registered with www.clinicaltrials.gov (NCT01093482).
Purpose To analyze the relationship between hypercapnia developing within the first 48 h after the start of mechanical ventilation and outcome in patients with acute respiratory distress syndrome (ARDS). Patients and methods We performed a secondary analysis of three prospective non-interventional cohort studies focusing on ARDS patients from 927 intensive care units (ICUs) in 40 countries. These patients received mechanical ventilation for more than 12 h during 1-month periods in 1998, 2004, and 2010. We used multivariable logistic regression and a propensity score analysis to examine the association between hypercapnia and ICU mortality. Main outcomes We included 1899 patients with ARDS in this study. The relationship between maximum PaCO2 in the first 48 h and mortality suggests higher mortality at or above PaCO2 of ≥50 mmHg. Patients with severe hypercapnia (PaCO2 ≥50 mmHg) had higher complication rates, more organ failures, and worse outcomes. After adjusting for age, SAPS II score, respiratory rate, positive end-expiratory pressure, PaO2/FiO2 ratio, driving pressure, pressure/volume limitation strategy (PLS), corrected minute ventilation, and presence of acidosis, severe hypercapnia was associated with increased risk of ICU mortality [odds ratio (OR) 1.93, 95% confidence interval (CI) 1.32 to 2.81; p = 0.001]. In patients with severe hypercapnia matched for all other variables, ventilation with PLS was associated with higher ICU mortality (OR 1.58, CI 95% 1.04–2.41; p = 0.032). Conclusions Severe hypercapnia appears to be independently associated with higher ICU mortality in patients with ARDS.
IntroductionThe aim of this study was to describe and compare the changes in ventilator management and complications over time, as well as variables associated with 28-day hospital mortality in patients receiving mechanical ventilation (MV) after cardiac arrest.MethodsWe performed a secondary analysis of three prospective, observational multicenter studies conducted in 1998, 2004 and 2010 in 927 ICUs from 40 countries. We screened 18,302 patients receiving MV for more than 12 hours during a one-month-period. We included 812 patients receiving MV after cardiac arrest. We collected data on demographics, daily ventilator settings, complications during ventilation and outcomes. Multivariate logistic regression analysis was performed to calculate odds ratios, determining which variables within 24 hours of hospital admission were associated with 28-day hospital mortality and occurrence of acute respiratory distress syndrome (ARDS) and pneumonia acquired during ICU stay at 48 hours after admission.ResultsAmong 812 patients, 100 were included from 1998, 239 from 2004 and 473 from 2010. Ventilatory management changed over time, with decreased tidal volumes (VT) (1998: mean 8.9 (standard deviation (SD) 2) ml/kg actual body weight (ABW), 2010: 6.7 (SD 2) ml/kg ABW; 2004: 9 (SD 2.3) ml/kg predicted body weight (PBW), 2010: 7.95 (SD 1.7) ml/kg PBW) and increased positive end-expiratory pressure (PEEP) (1998: mean 3.5 (SD 3), 2010: 6.5 (SD 3); P <0.001). Patients included from 2010 had more sepsis, cardiovascular dysfunction and neurological failure, but 28-day hospital mortality was similar over time (52% in 1998, 57% in 2004 and 52% in 2010). Variables independently associated with 28-day hospital mortality were: older age, PaO2 <60 mmHg, cardiovascular dysfunction and less use of sedative agents. Higher VT, and plateau pressure with lower PEEP were associated with occurrence of ARDS and pneumonia acquired during ICU stay.ConclusionsProtective mechanical ventilation with lower VT and higher PEEP is more commonly used after cardiac arrest. The incidence of pulmonary complications decreased, while other non-respiratory organ failures increased with time. The application of protective mechanical ventilation and the prevention of single and multiple organ failure may be considered to improve outcome in patients after cardiac arrest.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0922-9) contains supplementary material, which is available to authorized users.
Purpose: Variations in clinical characteristics and management and in the mortality of mechanically ventilated patients have not been sufficiently evaluated. We hypothesized that mortality shows a variability associated with country after adjustment for clinical characteristics and management. Methods: Analysis of four studies carried out at 6-year intervals over an 18-year period. The studies included 26,024 patients (5183 in 1998, 4968 in 2004, 8108 in 2010, and 7765 in 2016) admitted to 1253 units from 38 countries. The primary outcome was 28-day mortality. We performed analyses using multilevel logistic modeling with mixed-random effects, including country as a random variable. To evaluate the effect of management strategies on mortality, a mediation analysis was performed. Results: Adjusted 28-day mortality decreased significantly over time (first study as reference): 2004: odds ratio 0.82 (95% confidence interval [CI] 0.72-0.93); 2010: 0.63 (95% CI 0.53-0.75); 2016: 0.49 (95% CI 0.39-0.61). A protective ventilatory strategy and the use of continuous sedation mediated a moderate fraction of the effect of time on mortality in patients with moderate hypoxemia and without hypoxemia, respectively. Logistic multilevel modeling showed a significant effect of country on mortality:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.