Imogolite-like nanotubes have been synthesised in which SiCH(3) groups have been introduced in place of the SiOH groups that naturally occur at the inner surface of imogolite, an alumino-silicate with formula (OH)(3)Al(2)O(3)SiOH, forming nanotubes with inner and outer diameter of 1.0 and 2.0 nm, respectively. The new nanotubular material, composition (OH)(3)Al(2)O(3)SiCH(3), has both larger pores and higher specific surface area than unmodified imogolite: it forms as hollow cylinders 3.0 nm wide and several microns long, with a specific surface area of ca. 800 m(2) g(-1) and intriguing surface properties, due to hydrophobic groups inside the nanotubes and hydrophilic Al(OH)Al groups at their outer surface. Adsorption of methane at 30 °C has been studied in the pressure range between 5 and 35 bar on both the new material and unmodified imogolite: it resulted that the new material adsorption capacity is about 2.5 times larger than that of imogolite, in agreement with both its larger pore volume and the presence of a methylated surface. On account of these properties and of its novelty, the studied material has several potential technical applications, e.g. in the fields of gas chromatography and gas separation.
A hybrid aerogel, composed of MoS sheets of 1T (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment-friendly hydrothermal cosynthesis, is proposed as electrode material for supercapacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS structure exhibits an excellent distribution of 1T and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS embedded in the reduced graphene oxide (rGO) matrix. A comparison with other "more conventional" hybrid rGO-MoX electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.