The structure changes, microstructure evolution, and mechanical properties during Powder Metallurgy (PM) through High Vacuum Sintering of a Ti-TiH2 matrix reinforced with Titanium Diboride (TiB2) particles were investigated. Composites were fabricated at 850, 1100, and 1300 °C. The strategy for the fabrication process was to use the PM route employing titanium hydride (TiH2) to reduce the consumption of Commercially Pure Titanium (CP-Ti). The structure of the composites was analyzed using X-Ray Diffraction (XRD), while Optical Microscopy (OM), and Field-Emission Scanning Electron Microscopy (FE-SEM) analysis were used to study the microstructure. Vickers microhardness and nanoindentation were performed to evaluate the elastoplastic and mechanical properties. According to the results, the unreinforced Ti-TiH2 sample presented higher sinter-ability, attaining relative density values of 93% with the higher sintering temperature. Composite samples showed TiB and TiB2 phases without the presence of any TiH2 residual phase. The highest mechanical properties were measured for reinforced samples with 30 vol.% of TiB2, sintered at 1300 °C, showing values of 509.29 HV and 4.94 GPa for microindentation Vickers and nanoindentation essays, respectively, which resulted in 8.5% higher than the values for the unreinforced sample. In addition, their H/Er and H3/Er2 ratios are higher than those of CP-Ti suggesting a better wear resistance of the Ti-TiH2 matrix-reinforced samples, combined with its mechanical properties makes it more suitable than CP-Ti for its potential in biomedical applications.
High-temperature erosion is a detrimental phenomenon in industries where particle flow exists, in which the search for new materials and mixes to increase the lifespan of mechanical components exposed to erosion is crucial. The present work studied the erosion resistance of two coatings at 25 °C (RT) and 900 °C in a sandblast-type rig. The coatings were fabricated with cermet-type powders: (C1) commercial Cr3C2-NiCr and (C2) commercial Cr3C2-NiCr mixed with a laboratory-conditioned powder consisting of NiCrAlY (linking matrix) and SiC (ceramic phase). Both coatings were applied on an Incoloy 330 substrate using an HVOF thermal spray process. The C2 coating was 11% harder than C1 but had a 62.2% decrement in its KIC value. The erosion test results at RT and 900 °C showed better erosion resistance on C1 than C2 at both testing temperatures and the three impact angles (30°, 60°, and 90°); this was attributed to the minor KIC induced by SiC hard particles and the bigger propagation of inter-splat and trans-splat cracks in C2. The erosion mechanisms at RT and 900 °C were similar, but at high temperature, the apparent size of plastic deformation (micro-cutting, grooves, and craters) increased due to an increase in the matrix ductility. Maximum penetration depth always occurred at a 60° impact angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.