Con el fin de generar un registro de los hongos entomopatógenos con el potencial para el control de insectos plaga en el área agrícola del estado de Tamaulipas. En este estudio se cuantificó la abundancia y determinó la distribución de los hongos entomopatógenos en diferentes localidades y ambientes del sur de Tamaulipas, México. En 2016, los hongos entomopatógenos fueron recolectados en la Brecha de Corpus Christi, Villa Cuauhtémoc, Esteros y Miradores. En cada localidad se seleccionaron los siguientes ambientes: parcelas cultivadas con gramíneas (sorgo y maíz), fabáceas (soya, frijol y jícama), árboles frutales (limón, papaya, litche, mango y naranja), hortalizas (cebolla, chile, tomate y acelga) y parcelas sin cultivar (ambiente natural). En cada ambiente se recolectaron muestras de suelo. Posteriormente, en el suelo recolectado, se trampearon a los hongos entomopatógenos con larvas de Tenebrio molitor L. En total, se recolectaron 134 aislados de los géneros: Beauveria sp., Lecanicillium sp., Metarhizium sp., Paecilomyces sp., Trichoderma sp. e Isaria sp. De los cuales, Beauveria sp. presentó la mayor abundancia y distribución. Mientras que, los otros géneros fueron recolectados en localidades y ambientes específicos. Este resultado indica la posibilidad de que los géneros de los hongos encontrados estén fuertemente adaptados a los factores bióticos y abióticos del ambiente.
Modelación de caudales en función de los macroporos del suelo en una microcuenca forestal de Durango, MéxicoModeling runoff components as a function of soil macropores in a forest watershed of Durango, Mexico
This paper presents type-1 and type-2 radial basis function networks to evaluate quality features. The proposed methodology fuses the central composite design and the radial basis function neural networks in type-1 or interval type-2 model to generate a network that evaluates quality features in an industrial image processing. The advantages of this proposal include that training is not required to get an accurate result and that the generation of the fuzzy rule base using central composite design method and statistical indicators is simplified. Another advantage is the excellent results obtained with the proposal. Experimentation shows an error reduction of 90% when the interval type 2 Mandami Radial basis function neural network compared against its type-1 counterpart using the Gaussian membership functions onto a radial basis function network.
This paper presents type-1 and type-2 radial basis function networks to evaluate quality features. The proposed methodology fuses the central composite design and the radial basis function neural networks in type-1 or interval type-2 model to generate a network that evaluates quality features in an industrial image processing. The advantages of this proposal include that training is not required to get an accurate result and that the generation of the fuzzy rule base using central composite design method and statistical indicators is simplified. Another advantage is the excellent results obtained with the proposal. Experimentation shows an error reduction of 90% when the interval type 2 Mandami Radial basis function neural network compared against its type-1 counterpart using the Gaussian membership functions onto a radial basis function network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.